Skip to main content
Log in

Spin 3/2 Field Equation: Separation and Solution in a Class of Lemaître–Tolman–Bondi Cosmologies

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The spin 3/2 field equation is studied in the general Lemaître–Tolman–Bondi (LTB) space-time. The equation is separated by variable separation. The angular dependence factors out at the level of the general LTB metric. Due to spherical symmetry the separated angular equations coincide with those, previously integrated, relative to the Robertson–Walker and Schwarzschild metric. Separation of time and radial dependence is possible within a class of LTB cosmological models for which the physical radius is a product of a time and a radial function, the last one being further selected by the consistency condition of the radial equations. The separated time dependence, that can be integrated by series, results essentially unique. Instead the radial dependence can be reduced to two independent second order ordinary differential equations that still depend on an arbitrary radial function that is an integration function of the cosmological model. The generalization of the scheme to arbitrary spin field equation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchdahl, H.A.: On the compatibility of relativistic wave equations for particle of higher spin in the presence of gravitational fields. Il Nuovo Cimento 10, 96 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wünsch, V.: Cauchy’s problem and Huygens’ principle for relativistic higher spin wave equation in arbitrary curved space-time. Gen. Relativ. Gravit. 17, 15 (1983)

    Article  Google Scholar 

  3. Penrose, R., Rindler, W.: Spinors and Space-Time. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  4. Illge, R.: Massive fields of arbitrary spin in curved space-times. Commun. Math. Phys. 158, 433 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Zecca, A.: Proca fields interpretation of spin 1 equation in Robertson–Walker space-time. Gen. Relativ. Gravit. 38, 837 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)

    MATH  Google Scholar 

  7. Barut, A.O., Duru, I.H.: Exact solution of the Dirac equation in spatially flat Robertson–Walker space-times. Phys. Rev. D, Part. Fields 36, 3705 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kovalyov, M., Légaré, M.: The Dirac equation in Robertson–Walker spaces: a class of solutions. J. Math. Phys. 31, 191 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kalnins, E.G., Miller, W. Jr.: Complete sets of functions for perturbations of Robertson–Walker cosmologies and spin 1 equations in Robertson–Walker-type space-times. J. Math. Phys. 32, 698 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Zecca, A.: The dirac equation in the Roberson–Walker space-time. J. Math. Phys. 37, 874 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Zecca, A.: Separation of the massless spin-1 equation in Robertson–Walker space-time. Int. J. Theor. Phys. 35, 323 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zecca, A.: Variable separation and solutions of massive field equations of arbitrary spin in Robertson–Walker space-time. Adv. Stud. Theor. Phys. 3, 239 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Zecca, A.: Spinor field equation of arbitrary spin in Robertson–Walker space time: solution. Adv. Stud. Theor. Phys. 4, 353 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Boulware, D.G.: Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D 11, 1404 (1975) (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gal’tsov, G.V., Pomerantseva, G.A., Chizhov, G.A.: Behaviour of massive vector particles in a Schwarzschild field. Sov. Phys. J. 27, 697 (1984) (1984)

    Article  Google Scholar 

  16. Zecca, A.: Dirac equation in Schwarzschild geometry. Il Nuovo Cimento B 113, 1309 (1998)

    ADS  MathSciNet  Google Scholar 

  17. Zecca, A.: Massive spin 1 equation in Schwarzschild geometry. Il Nuovo Cimento B 120, 1017 (2005)

    ADS  MathSciNet  Google Scholar 

  18. Zecca, A.: Aspects of solution of spin 3/2 equation in Schwarzschild space-time. Int. J. Theor. Phys. 46, 3060 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zecca, A.: Massive field equations of arbitrary spin in Schwarzschild geometry: separation induced by spin-3/2 case. Int. J. Theor. Phys. 45, 2208 (2006)

    Article  MATH  Google Scholar 

  20. Krasinski, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  21. Zecca, A.: Scalar field equation in Lemaître–Tolman–Bondi cosmological models. Il Nuovo Cimento 116B, 341 (2001)

    ADS  MathSciNet  Google Scholar 

  22. Zecca, A.: Dirac equation in Lemaître–Tolman–Bondi models. Gen. Relativ. Gravit. 32, 1197 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Zecca, A.: Separation and solution of spin 1 field equation and particle production in Lemaître–Tolman–Bondi cosmologies. In: Alfonso-Faus, A. (ed.) Aspects of Today’s Cosmology 2 (2011, to appear)

  24. Zecca, A.: Weyl spinor and solutions of massless free field equations. Int. J. Theor. Phys. 39, 377 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566 (1962) (1962)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zecca, A.: Some remarks on Dirac’s equation in the Tolman–Bondi geometry. Int. J. Theor. Phys. 32, 615 (1993)

    Article  MathSciNet  Google Scholar 

  27. Demianski, H., Lasota, J.P.: Black holes in expanding universe. Nat. Phys. Sci. 242, 53 (1973) (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zecca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, A. Spin 3/2 Field Equation: Separation and Solution in a Class of Lemaître–Tolman–Bondi Cosmologies. Int J Theor Phys 51, 438–446 (2012). https://doi.org/10.1007/s10773-011-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0920-x

Keywords

Navigation