Skip to main content
Log in

The Isotopic Field Charge Spin Assumption

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper discusses fundamental physical interactions starting from two preliminary assumptions.

  1. (a)

    Although mass of gravity and mass of inertia are equivalent quantities in their measured values, they are qualitatively not identical physical entities. We will take into consideration this difference in our equations. Then it extends this ‘equivalence-is-not-identityprinciple to sources of further fundamental interaction fields, other than gravity.

  2. (b)

    Physical interactions occur between these qualitatively different entities.

First it interprets these assumptions. Then, it sketches a picture of fundamental physical fields influenced by the distinction between the two qualitative forms of the individual field-charges and interaction between them. It applies the results of a former publication (Darvas in Concepts Phys. VI(1):3–16, 2009), which mathematically proved the existence of an invariance between the two isotopic forms of field-charges. It introduces the notion of isotopic-field-charge-spin, proven as a conserved quantity. This conservation predicts the existence of a boson mediating between the two possible isotopic-field-charge-spin states. After these preliminary foundations, it formulates certain consequences in the author’s view on the physical structure of matter. Finally the paper discusses how these issues can allow an alternative interpretation of physical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, G., Huzinaga, S.: Recoil effect on electron-proton forces and inapplicability of energy law. Prog. Theor. Phys. 6(5), 673–683 (1951). http://ptp.ipap.jp/link?PTP/6/673

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett. B 59, 85 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain). Z. Phys. A 71(3–4), 205–226 (1931)

    MATH  Google Scholar 

  4. Bethe, H.A., Bethe, H.: Enrico Fermi in Rome, 1931–1932. Phys. Today 6, 28 (2002)

    Article  Google Scholar 

  5. Bethe, H., Fermi, E.: Über die Wechselwirkung von zwei elektronen. Z. Phys. 77(5–6), 296–306 (1932)

    ADS  MATH  Google Scholar 

  6. Brading, K.A.: Which symmetry? Noether, Weyl and conservation of electric charge. Stud. Hist. Philos. Mod. Phys. 33, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brading, K.A., Brown, H.R.: Noether’s theorems and gauge symmetries. arXiv:hep-th/0009058v1 (2000), pp. 1–16

  8. Brading, K.A., Brown, H.R.: Symmetries and Noether’s theorems. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 89–109. Cambridge University Press, Cambridge (2003), 445 pp.

    Chapter  Google Scholar 

  9. Brading, K.A., Brown, H.R.: Are gauge symmetry transformations observable? Br. J. Philos. Sci. 55(4), 645–665 (2004)

    Article  MathSciNet  Google Scholar 

  10. Breit, G.: Phys. Rev. 34, 553 (1929)

    Article  MathSciNet  ADS  Google Scholar 

  11. Breit, G.: Phys. Rev. 39, 616 (1932)

    Article  ADS  MATH  Google Scholar 

  12. Castellani, E.: Reductionism, emergence and effective field theories. arXiv:physics/0101039v1 (2001), 18 pp.

  13. Castellani, E.: Symmetry and equivalence. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 425–436. Cambridge University Press, Cambridge (2003), 445 pp.

    Chapter  Google Scholar 

  14. Castellani, E.: Dirac on gauges and constraints. Int. J. Theor. Phys. 43(6), 1503–1514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. CERN workshop, Report, arXiv:0801.1800 (2008)

  16. CERN workshop, Report, arXiv:0801.1833 (2008)

  17. CERN workshop, Report, arXiv:0801.1826 (2008)

  18. Darvas, G.: Symmetry and asymmetry in our surroundings; Aspects of symmetry in the phenomena of nature, physical laws, and human perception. In: Weibel, P. (ed.) Olafur Eliasson: Surroundings Surrounded, Essays on Space and Science, pp. 136–149. Center for Arts and Media, Karlsruhe (2001), 703 pp.

    Google Scholar 

  19. Darvas, G.: Generalisation of the concept of symmetry and its classification in physics. Acta Phys. Hung. A, Heavy Ion Phys. 19(3–4), 373–379 (2004)

    Article  ADS  Google Scholar 

  20. Darvas, G.: Invariance, identity, equivalence. Symmetry, Cult. Sci. 17, 175–192 (2006)

    MATH  Google Scholar 

  21. Darvas, G.: Symmetry. Birkhäuser, Basel (2007), xi+508 p.

    MATH  Google Scholar 

  22. Darvas, G.: Conserved Noether currents, Utiyama’s theory of invariant variation, and velocity dependence in local gauge invariance. Concepts Phys. VI(1), 3–16 (2009)

    Article  ADS  Google Scholar 

  23. Dyson, F.: Hans Bethe and Quantum electrodynamics. Phys. Today 58(10), 48–50 (2005)

    Article  Google Scholar 

  24. de Broglie, L.: Note. Radiations.—Ondes et quanta. Comptes Rendus 177, 507–510 (1923)

    Google Scholar 

  25. de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 10(III), 22–128 (1925)

    Google Scholar 

  26. de Haas, E.P.J.: The combination of de Broglie’s harmony of the phases and Mie’s theory of gravity results in a principle of equivalence for quantum gravity. Ann. Fond. Louis Broglie 29(4), 707–726 (2004)

    Google Scholar 

  27. de Haas, E.P.J.: A renewed theory of electrodynamics in the framework of a Dirac ether. In: Proc. P.I.R.T.—IX, London, 2004, pp. 95–123. PD Publications, Liverpool (2004)

    Google Scholar 

  28. de Haas, E.P.J.: From Laue’s stress-energy tensor to Maxwell’s Equations and the implications for Einstein’s GTR. In: Duffy, M.C., et al. (ed.) Proceedings of the Int. Conference “Physical Interpretation of Relativity Theory (PIRT-05)”. Bauman Univ. Press, Moscow (2005)

    Google Scholar 

  29. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. 117(778), 610–624 (1928)

    Article  ADS  MATH  Google Scholar 

  30. Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. 126(801), 360–365 (1929)

    ADS  Google Scholar 

  31. Dirac, P.A.M.: A new classical theory of electrons. Proc. R. Soc. A 209, 291–296 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Dirac, P.A.M.: Nature 168, 906–907 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  33. Dirac, P.A.M.: An extensible model of the electron. Proc. R. Soc. A 268, 57–67 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891 (1905). English translation: on the electrodynamics of moving bodies. In: The Principle of Relativity. Methuen and Co., London (1923)

    Article  MATH  Google Scholar 

  35. Einstein, A.: Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? Ann. Phys. 18, 639 (1905). English transl.: Does the inertia of a body depend upon its energy-content? In: The Principle of Relativity. Methuen and Co., London (1923)

    Article  Google Scholar 

  36. Einstein, A.: Phys. Z. 19, 165–166 (1918)

    Google Scholar 

  37. Einstein, A.: Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Königlich Preussische Akademie der Wissenschaften, Physikalisch-matematische Klasse, Sitsungsberichte, pp. 349–356 (1919). Translated as: Do gravitational fields play an essential part in the structure of elementary particles of matter? In: Lorentz, H.A., Einstein, A., Minkowsky, H., et al. (eds.) The Principle of Relativity, pp. 189–198. Dover (1923)

  38. Einstein, A.: A brief outline of the development of the theory of relativity. Nature 106(2677), 782–784 (1921)

    Article  ADS  Google Scholar 

  39. Einstein, A.: Elementary derivation of the equivalence of mass and energy. Bull. Am. Math. Soc. 41, 223–230 (1935)

    Article  MathSciNet  Google Scholar 

  40. Fermi, E.: Rev. Mod. Phys. 4, 87 (1932)

    Article  ADS  MATH  Google Scholar 

  41. Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76(6), 769–789 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. Benjamin, Elmsford (1964). Re-published by Westview Press (2000), 336 pp.

    Google Scholar 

  43. Gershon, T.: Quantum loop effects. Phys. World, June 22–25 (2008). http://lhcb-public.web.cern.ch/lhcb/Hot%20News/Articles/PWJun08gershon.pdf

  44. Glashow, Sh.L., Weinberg, S.: Natural conservation laws for neutral currents. Phys. Rev. D 15, 1958–1965 (1977)

    Article  ADS  Google Scholar 

  45. Goldstone, J.: Nuovo Cimento 19, 154 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  46. Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127(3), 965–970 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508–509 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  48. Higgs, P.W.: Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1162 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  49. Horváth, D.: The deepest symmetries of nature: CPT and SUSY. Invited paper presented at Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, Wako, Japan, 14–16 March (2005). http://www.kfki.hu/~horvath/RIPNP-GRID/Publications/2005/HD_RikenCPT05paper.pdf

  50. Horváth, D.: Symmetries and their violation in particle physics. Symmetry, Cult. Sci. 17(1–2), 159–174 (2006)

    Google Scholar 

  51. Hraskó, P.: Ekvivalens-e egymással a tömeg és az energia? [Are mass and energy equivalent?]. Fiz. Szle. 53(9), 330 (2003)

    Google Scholar 

  52. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  53. Jackiw, R., Rebbi, C.: Conformal properties of Yang-Mills pseudoparticle. Phys. Rev. D 14(2), 517–523 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  54. Martin, C.A.: On continuous symmetries and the foundations of modern physics. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 29–60. Cambridge University Press, Cambridge (2003), 445 pp.

    Chapter  Google Scholar 

  55. Mie, G.: Ann. Phys. 39, 1–40 (1912)

    Article  Google Scholar 

  56. Mie, G.: Grundlagen einer Theorie der Materie. Ann. Phys. 37, 511–534 (1912)

    Article  MATH  Google Scholar 

  57. Mie, G.: Ann. Phys. 40, 1–66 (1913)

    Article  MATH  Google Scholar 

  58. Mills, R.: Gauge fields. Am. J. Phys. 57(6), 493–507 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  59. Møller, C.: Über den Stoß zweier Teilchen unter Berücksichtigung der Retardation der Kräfte. Z. Phys. 70(11–12), 786–795 (1931)

    ADS  MATH  Google Scholar 

  60. Ne’eman, Y.: The interplay of symmetry, order and information in physics and the impact of gauge symmetry on algebraic topology. Symmetry, Cult. Sci. 1(3), 229–255 (1990)

    MathSciNet  MATH  Google Scholar 

  61. Ne’eman, Y., Kirsh, Y.: The Particle Hunters. Cambridge University Press, Cambridge (1986), 272 pp.

    Google Scholar 

  62. Noether, E.A.: Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen: Mathematisch-physikalische Klasse, pp. 235–257 (1918)

  63. Norton, J.D.: General covariance, gauge theories and the Kretschmann Objection. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics: Philosophical Reflections, pp. 110–123. Cambridge University Press, Cambridge (2003), 445 pp.

    Chapter  Google Scholar 

  64. Pauli, W.: Relativistic field theories. Rev. Mod. Phys. 13, 203–232 (1941)

    Article  ADS  MATH  Google Scholar 

  65. Pons, J.M., Salisbury, D.C., Shepley, L.C.: Gauge transformations in Einstein-Yang-Mills theories. J. Math. Phys. (1999, submitted). arXiv:gr-qc/9912086v1

  66. Rosen, J.: Symmetry in Science, An Introduction to the General Theory. Springer, Berlin (1995), 213 pp.

    Google Scholar 

  67. Rosen, J.: Symmetry Rules, How Science and Nature Are founded on Symmetry. The Frontiers Collection. Springer, Berlin (2008), 304 pp.

    MATH  Google Scholar 

  68. Ruffini, R., Vereshchagin, G., Xue, S.-S.: Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487(1–4), 1–140 (2010)

    Article  ADS  Google Scholar 

  69. Salpeter, E.E., Bethe, H.A.: A relativistic equation for bound-state problems. Phys. Rev. 84(6), 1232–1242 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Schweber, S.S.: Enrico Fermi and quantum electrodynamics, 1929–1932. Phys. Today 6, 31 (2002)

    Article  Google Scholar 

  71. ’t Hooft, G.: Introduction to General Relativity. Rinton Press, Princeton (2002)

    Google Scholar 

  72. ’t Hooft, G.: The conceptual basis of quantum field theory. In: Handbook of the Philosophy of Science. Elsevier, Amsterdam (2005)

    Google Scholar 

  73. The Belle Collaboration: Difference in direct charge-parity violation between charged and neutral B meson decays. Nature 452, 332–335 (2008). doi:10.1038/nature06827

    Article  Google Scholar 

  74. Utiyama, R.: Invariant theoretical interpretation of interaction. Phys. Rev. 101(5), 1597–1607 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Utiyama, R.: Theory of invariant variation and the generalised canonical dynamics. Prog. Theor. Phys. Suppl. 9, 19–44 (1959)

    Article  ADS  Google Scholar 

  76. von Laue, M.: Ann. Phys. 35, 524–542 (1911)

    Article  MATH  Google Scholar 

  77. von Laue, M.: Relativitätstheorie, 6th edn. Braunschweig (1955)

  78. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19(21), 1264–1266 (1967)

    Article  ADS  Google Scholar 

  79. Weinberg, S.: General theory of broken symmetries. Phys. Rev. D 7, 1068–1082 (1973)

    Article  ADS  Google Scholar 

  80. Weinberg, S.: Unified theory of weak and electromagnetic interactions (Nobel lecture). Rev. Mod. Phys. 52(3), 315 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  81. Weinberg, S.: Foundations. The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  82. Weinberg, S.: Modern Applications. The Quantum Theory of Fields, vol. II. Cambridge University Press, Cambridge (1996). Chap. 15. Non-Abelian gauge theories

    MATH  Google Scholar 

  83. Weinberg, S.: Changing attitudes and the standard model. In: Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (eds.) The Rise of the Standard Model, pp. 36–44. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  84. Weyl, H.: Gravitation und Elektrizität. Sitzungsberichte Preussische Akademie der Wissenschaften, pp. 465–480 (1918)

  85. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1928)

    Google Scholar 

  86. Weyl, H.: Electron and gravitation. In: O’Raifeartaigh (ed.) The Dawning of Gauge Theory. Princeton Univ. Press, Princeton (1929)

    Google Scholar 

  87. Weyl, H.: Philosophy of Mathematics and Natural Science, pp. 170–180. Princeton University Press, Princeton (1949). With a new introduction by F. Wilczek (2009), 315 pp.

    MATH  Google Scholar 

  88. Wigner, E.P.: Events, laws of nature and invariance principles. In: Wigner (ed.) Symmetries and Reflections, pp. 38–50. Indiana University Press, Bloomington (1967)

    Google Scholar 

  89. Wigner, E.P.: The meaning of symmetry. In: Zichichi, A. (ed.) Gauge Interactions Theory and Experiment, Proceedings of the 20th International School of Subnuclear Physics, Erice, Sicily, pp. 729–733. Plenum, New York (1984)

    Google Scholar 

  90. Wilczek, F.: Riemann-Einstein structure from volume and gauge symmetry, IASSNS-HEP-97/142. (1998). arXiv:hep-th/9801184v4

  91. Wilczek, F.: The origin of mass. MIT Phys. Annu. 2003, 24–35 (2003)

    Google Scholar 

  92. Wilczek, F.: Particle physics: mass by numbers. Nature 456, 449–450 (2008). doi:10.1038/456449a

    Article  ADS  Google Scholar 

  93. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191–195 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  94. Zee, A.: Fearful Symmetry, Princeton University Press, Princeton (1999), 336 pp., extended edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Darvas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darvas, G. The Isotopic Field Charge Spin Assumption. Int J Theor Phys 50, 2961–2991 (2011). https://doi.org/10.1007/s10773-011-0796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0796-9

Keywords

Navigation