Skip to main content
Log in

The Inevitability of Fine Tuning in a Complex Universe

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Why should the universe need to be fine tuned? The thesis is presented that parameter sensitivity arises as a natural consequence of the mathematics of dynamical systems with complex outcomes. Hence, fine tuning is a mathematical correlate of complexity and should not elicit surprise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, F.C.: Stars in other universes: stellar structure with different fundamental constants. J. Cosmol. Astropart. Phys. 08, 010 (2008)

    Article  ADS  Google Scholar 

  2. Agrawal, V., Barr, S.M., Donoghue, J.F., Seckel, D.: Anthropic considerations in multiple-domain theories and the scale of electroweak symmetry breaking. Phys. Rev. Lett. 80, 1822 (1998a)

    Article  ADS  Google Scholar 

  3. Agrawal, V., Barr, S.M., Donoghue, J.F., Seckel, D.: The anthropic principle and the mass scale of the standard model. Phys. Rev. D 57, 5480 (1998b)

    Article  ADS  Google Scholar 

  4. Aguirre, A.: The cold big-bang cosmology as a counter-example to several anthropic arguments. Phys. Rev. D 64, 083508 (2001)

    Article  ADS  Google Scholar 

  5. Albrecht, A., et al.: Report of the dark energy task force, arXiv:astro-ph/0609591 (2006)

  6. Barrow, J.D., Morris, S.C., Freeland, S.J., Harper, C.L. (eds.): Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  7. Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle. Oxford University Press, London (1986)

    Google Scholar 

  8. Bousso, R., Harnik, R., Kribs, G.D., Perez, G.: Predicting the cosmological constant from the causal entropic principle. Phys. Rev. D 76, 043513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bousso, R., Hall, L.J., Nomura, Y.: Multiverse understanding of cosmological coincidences. Phys. Rev. D 80, 063510 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bousso, R., Harnik, R.: The entropic landscape, arXiv:1001.1155 [hep-th] (2010)

  11. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Bradford, R.A.W.: The effect of hypothetical diproton stability on the universe. J. Astrophys. Astron. 30, 119–131 (2009)

    Article  ADS  Google Scholar 

  13. Carr, B.J., Rees, M.J.: The anthropic principle and the structure of the physical world. Nature 278, 605–612 (1979)

    Article  ADS  Google Scholar 

  14. Carr, B.J.: Universe or Multiverse? Cambridge University Press, Cambridge (2007)

    Google Scholar 

  15. Carter, B.: The significance of numerical coincidences in nature, Part I: The role of fundamental microphysical parameters in cosmogony, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Preprint. Now available as arXiv:0710.3543 [hep-th] (1967)

  16. Carter, B.: Large number coincidences and the anthropic principle in cosmology. In: Longair, M. (ed.) Confrontations of Cosmological Theories with Observational Data (I.A.U. Symposium 63), pp. 291–298. Reidel, Dordrecht (1974)

    Chapter  Google Scholar 

  17. Csoto, A., Oberhummer, H., Schlattl, H.: At the edge of nuclear stability: nonlinear quantum ampliers. Heavy Ion Phys. 12, 149 (2000). arXiv:nucl-th/0010051

    Google Scholar 

  18. Csoto, A., Oberhummer, H., Schlattl, H.: Fine-tuning the basic forces of nature by the triple-alpha process in red giant stars. Nucl. Phys. A 688, 560 (2001). arXiv:astro-ph/0010052

    Article  ADS  Google Scholar 

  19. Damour, T., Donoghue, J.F.: Constraints on the variability of quark masses from nuclear binding. Phys. Rev. D 78, 014014 (2008)

    Article  ADS  Google Scholar 

  20. Davies, P.C.W.: Time variation of the coupling constants. J. Phys. A 5, 1296 (1972)

    Article  ADS  Google Scholar 

  21. Davies, P.C.W.: The Accidental Universe. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  22. Davies, P.C.W.: Multiverse cosmological models. Mod. Phys. Lett. A 19, 727 (2004)

    Article  ADS  Google Scholar 

  23. Davies, P.C.W.: The Goldilocks Enigma: Why is the Universe Just Right for Life? Allen Lane, London (2006)

    Google Scholar 

  24. Dyson, F.J.: Energy in the universe. Sci. Am. 225, 51 (1971)

    Article  ADS  Google Scholar 

  25. Egan, C.A.: Dark energy, anthropic selection effects, entropy and life. PhD Thesis, University of New South Wales, Available as arXiv:1005.0745 (2009)

  26. Gribbin, J., Rees, M.: Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology. Bantam Books, New York (1989)

    Google Scholar 

  27. Harnik, R., Kribs, G.D., Perez, G.: A universe without weak interactions. Phys. Rev. D 74, 035006 (2006)

    Article  ADS  Google Scholar 

  28. Hogan, C.J.: Why the universe is just so. Rev. Mod. Phys. 72, 1149 (2000)

    Article  ADS  Google Scholar 

  29. Hogan, C.J.: Nuclear astrophysics of worlds in the string landscape. Phys. Rev. D 74, 123514 (2006)

    Article  ADS  Google Scholar 

  30. Hoyle, F.: On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. Ser. 1, 121–146 (1954)

    Article  ADS  Google Scholar 

  31. Jaffe, R.L., Jenkins, A., Kimchi, I.: Quark masses: An environmental impact statement. Phys. Rev. D 79, 065014 (2009)

    Article  ADS  Google Scholar 

  32. Jenkins, A.: Anthropic constraints on fermion masses. Acta Phys. Pol., B Proc. Suppl. 2, 283–288 (2009)

    Google Scholar 

  33. Jenkins, A., Perez, G.: Looking for life in the multiverse. Sci. Am. (2010) 2010, 302

  34. Kauffman, S.A.: The Origins of Order. Oxford University Press, London (1993)

    Google Scholar 

  35. Klee, R.: The revenge of Pythagoras: How a mathematical sharp practice undermines the contemporary design argument in astrophysical cosmology. Br. J. Philos. Sci. 53, 331–354 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lineweaver, C.H., Egan, C.A.: The cosmic coincidence as a temporal selection effect produced by the age distribution of terrestrial planets in the universe. Astrophys. J. 671, 853–860 (2007)

    Article  ADS  Google Scholar 

  37. Lineweaver, C.H., Egan, C.A.: Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5, 225–242 (2008)

    Article  ADS  Google Scholar 

  38. Manson, N.A.: There Is No Adequate Definition of ‘Fine-tuned for Life’. Inquiry 43, 341–52 (2000)

    Article  Google Scholar 

  39. Martel, H., Shapiro, P.R., Weinberg, S.: Likely values of the cosmological constant. Astrophys. J. 492, 29 (1998)

    Article  ADS  Google Scholar 

  40. McGrew, T., McGrew, L., Vestrup, E.: Probabilities and the fine-tuning argument: a sceptical view. Mind 110, 1027–1038 (2001)

    Article  Google Scholar 

  41. Michaelian, K.: Thermodynamic origin of life. Earth Syst. Dyn. Discuss. 1, 1–39 (2010). Also available as arXiv:0907.0042 [physics.gen-ph]

    Article  MATH  Google Scholar 

  42. Oberhummer, H., Csoto, A., Schlattl, H.: Fine-tuning carbon-based life in the universe by the triple-alpha process in red giants. arXiv:astro-ph/9908247 (1990)

  43. Oberhummer, H., Csoto, A., Schlattl, H.: Stellar production rates of carbon and its abundance in the universe. Science 289, 88 (2000)

    Article  ADS  Google Scholar 

  44. Prigogine, I., Stengers, I.: Order Out Of Chaos. Bantam Books, USA (1984)

    Google Scholar 

  45. Ratra, B., Vogeley, M.S.: Resource Letter: BE-1: The beginning and evolution of the Universe. Publ. Astron. Soc. Pac. 120, 235–265 (2008). arXiv:0706.1565 [astro-ph]

    Article  ADS  Google Scholar 

  46. Rees, M.J.: Just Six Number: The Deep Forces that Shape the Universe. Weidenfeld & Nicolson, London (1999)

    Google Scholar 

  47. Rees, M.J.: Numerical coincidences and ‘tuning’ in cosmology. In: Wickramasinghe, C., et al. (ed.) Fred Hoyle’s Universe, pp. 95–108. Kluwer, Norwell (2003). arXiv:astro-ph/0401424

    Google Scholar 

  48. Schlattl, H., Heger, A., Oberhummer, H., Rauscher, T., Csoto, A.: Sensitivity of the C and O production on the triple-alpha rate. Astrophys. Space Sci. 291, 27 (2004)

    Article  ADS  Google Scholar 

  49. Smolin, L.: The Life of the Cosmos. Weidenfeld & Nicholson, London (1997)

    MATH  Google Scholar 

  50. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Tegmark, M., Rees, M.J.: Why is the CMB fluctuation level 10−5? Astrophys. J. 499, 526–532 (1998)

    Article  ADS  Google Scholar 

  52. Wallace, D.: Gravity entropy, and cosmology. In Search of Clarity, British Journal for the Philosophy of Science (Advance Access April 26, 2010) (2010)

  53. Weinberg, S.: Living in the multiverse. In: Symposium Expectations of a Final Theory, September 2005, Trinity College Cambridge, Cambridge (2005). Obtainable as arXiv:hep-th/0511037 and also within Carr (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. W. Bradford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradford, R.A.W. The Inevitability of Fine Tuning in a Complex Universe. Int J Theor Phys 50, 1577–1601 (2011). https://doi.org/10.1007/s10773-011-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0669-2

Keywords

Navigation