Skip to main content
Log in

Cosmic Strings in a Model of Non-relativistic Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Hořava proposed a non-relativistic renormalizable theory of gravitation, which is reduced to general relativity (GR) in large distances (infra-red regime (IR)). It is believed that this theory is an ultra-violet (UV) completion for the classical theory of gravitation. In this paper, after a brief review of some fundamental features of this theory, we investigate it for a static cylindrical symmetric solution which describes Cosmic string as a special case. We have also investigated some possible solutions, and have seen that how the classical GR field equations are modified for generic potential V(g). In one case there is an algebraic constraint on the values of three coupling constants. Finally as a pioneering work we deduce the most general cosmic string in this theory. We explicitly show that how the coupling constants distort the mass parameter of cosmic string. We deduce an explicit function for mass per unit length of the space-time as a function of the coupling constants. We compare this function with another which Aryal et al. (Phys. Rev. D 34:2263, 1986) have found in GR. Also we calculate the self-force on a massive particle near Hořava-Lifshitz straight string and we give a typical order for the coupling constant g 9. This order of magnitude proposes a cosmological test for validity of this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hořava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009). arXiv:0812.4287 [hep-th]

    ADS  Google Scholar 

  2. Hořava, P.: Quantum criticality and Yang-Mills gauge theory, arXiv:0811.2217 [hep-th]

  3. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Pal, S.: Anisotropic gravity solutions in AdS/CFT, arXiv:0901.0599 [hep-th]

  5. Visser, M.: Lorentz symmetry breaking as a quantum field theory regulator. Phys. Rev. D 80, 025011 (2009). arXiv:0902.0590 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. Nastase, H.: On IR solutions in Hořava gravity theories, arXiv:0904.3604 [hep-th]

  7. Kiritsis, E., Kofinas, G.: Hořava-Lifshitz cosmology. Nucl. Phys. B 821, 467–480 (2009). arXiv:0904.1334 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Takahashi, T., Soda, J.: Phys. Rev. Lett. 102, 231301 (2009). arXiv:0904.0554 [hep-th]

    Article  ADS  Google Scholar 

  9. Calcagni, G.: JHEP 0909, 112 (2009). arXiv:0904.0829 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Lu, H., Mei, J., Pope, C.N.: Phys. Rev. Lett. 103, 091301 (2009). arXiv:0904.1595 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. Brandenberger, R.: arXiv:0904.2835 [hep-th]

  12. Saridakis, E.N.: Eur. Phys. J. C 67, 229–235 (2010). arXiv:0905.3532 [hep-th]

    Article  ADS  Google Scholar 

  13. Chen, B., Huang, Q.-G.: Phys. Lett. B 683, 108–113 (2010). arXiv:0904.4565 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. Germani, C., Kehagias, A., Sfetsos, K.: JHEP 09, 060 (2009). arXiv:0906.1201v4 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. Charmousis, C., Niz, G., Padilla, A., Saffin, P.M.: JHEP 0908, 070 (2009). arXiv:0905.2579 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. Myung, Y.S., Kim, Y.-W.: Eur. Phys. J. C Part. Fields 68(1–2), 265–270 (2010). doi:10.1140/epjc/s10052-010-1319-1. arXiv:0905.0179 [hep-th]

    Article  ADS  Google Scholar 

  17. Mukohyama, S.: JCAP 0906, 001 (2009). arXiv:0904.2190 [hep-th]

    ADS  Google Scholar 

  18. Mukohyama, S., Nakayama, K., Takahashi, F., Yokoyama, S.: Phys. Lett. B 679, 6 (2009). arXiv:0905.0055 [hep-th]

    Article  ADS  Google Scholar 

  19. Caia, R.-G., Caob, L.-M., Ohta, N.: Phys. Rev. D 80, 024003 (2009). arXiv:0904.3670 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. Setare, M.R., Jami, M.: JCAP 02, 010 (2010). arXiv:1001.1251 [hep-th]

    ADS  Google Scholar 

  21. Azadi, A., Momeni, D., Nouri Zonoz, M.: Phys. Lett. B 670 (2008)

  22. Momeni, D., Gholizade, H.: A note on constant curvature solutions in cylindrically symmetric metric f(R) gravity. Int. J. Mod. Phys. D 18(11), 1719–1729 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Momeni, D., Miraghaei, H.: Exact solution for the massless cylindrically symmetric scalar field in general relativity, with cosmological constant. Int. J. Mod. Phys. A 24(31), 5991–6000 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Quantum gravity without Lorentz invariance. JHEP 0910, 033 (2009). arXiv:0905.2798 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  25. Clarke, F.H.: Calculus of variations and optimal control lecture notes. UBC (1979)

  26. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Chelsea, New York (1980)

    Google Scholar 

  27. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einsteins Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  28. Tian, Q.: Phys. Rev. D 33, 3549 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. Krishna Rao, J.: Curr. Sci. 32, 350 (1963)

    Google Scholar 

  30. Krishna Rao, J.: Proc. Nat. Inst. Sci. India, A 30, 439 (1964)

    MathSciNet  Google Scholar 

  31. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Phenomenologically viable Lorentz-violating quantum gravity, arXiv:0904.4464 [hep-th]

  32. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962). Chap. 7. arXiv:gr-qc/0405109

    Google Scholar 

  33. Cantcheff, M.B., Grandi, N.E., Sturla, M.: Wormhole solutions to Hořava gravity, arXiv:0906.0582 [hep-th]

  34. Park, M.I.: The black hole and cosmological solutions in IR modified Hořava gravity. JHEP 0909, 123 (2009). arXiv:0905.4480 [hep-th]

    Article  ADS  Google Scholar 

  35. Wang, A., Wu, Y.: Thermodynamics and classification of cosmological models in the Hořava-Lifshitz theory of gravity. JCAP 07, 012 (2009). arXiv:0905.4117 [hep-th]

    ADS  Google Scholar 

  36. Minamitsuji, M.: Classification of cosmology with arbitrary matter in the Hořava-Lifshitz theory. Phys. Lett. B 684, 194–198 (2010). arXiv:0905.3892 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  37. Chen, J., Wang, Y.: Timelike geodesic motion in Hořava-Lifshitz spacetime. Int. J. Mod. Phys. A 25, 1439 (2010). arXiv:0905.2786 [hep-th]

    Article  ADS  MATH  Google Scholar 

  38. Mukohyama, S.: Dark matter as integration constant in Hořava-Lifshitz gravity. Phys. Rev. D 80, 064006 (2009). arXiv:0905.3563 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  39. Saridakis, E.N.: Hořava-Lifshitz dark energy. Eur. Phys. J. C 67, 229–235 (2010). arXiv:0905.3532 [hep-th]

    Article  ADS  Google Scholar 

  40. Chen, S., Jing, J.: Strong field gravitational lensing in the deformed Hořava-Lifshitz black hole. Phys. Rev. D 80, 024036 (2009). arXiv:0905.2055 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals Series and Products

  42. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions

  43. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 49, 975 (1994). arXiv:gr-qc/9307033

    Article  ADS  MathSciNet  Google Scholar 

  44. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  45. Anderson, M.: The mathematical theory of cosmic strings. IOP (2003)

  46. Wu, Q., Gong, Y., Wang, A.: Brane cosmology in the Hořava-Witten heterotic M-theory on S1/Z2. JCAP 06, 015 (2009)

    ADS  Google Scholar 

  47. Azeyanagia, T., Lib, W., Takayanagia, T.: On string theory duals of Lifshitz-like fixed points. JHEP 06, 084 (2009)

    Article  ADS  Google Scholar 

  48. Mann, R.B.: Lifshitz topological black holes. JHEP 06, 075 (2009)

    Article  ADS  Google Scholar 

  49. Yamamoto, K., Kobayashi, T., Nakamura, G.: Breaking the scale invariance of the primordial power spectrum in Hořava-Lifshitz cosmology, arXiv:0907.1549 [gr-qc]

  50. Vilenkin, A.: Gravitational field of vacuum domain walls and strings. Phys. Rev. D 23, 852 (1981)

    Article  ADS  Google Scholar 

  51. Gott, J.R.: Gravitational lensing effects of vacuum string: exact results. Astrophys. J. 288, 422 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  52. Hiscock, W.A.: Exact gravitational field of a string. Phys. Rev. D 31, 3288 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. Gott, J.R., Alpert, M.: General relativity in (2+1)-dimensional spacetime. Gen. Relativ. Gravit. 16, 243 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  54. Linet, B.: The static metrics with cylindrical symmetry describing a model of cosmic strings. Gen. Relativ. Gravit. 17, 1109 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  55. Hindmarsh, M., Wray, A.: Gravitational effects of line sources and the zero-width limit. Phys. Lett. B 251, 498 (1990)

    Article  ADS  Google Scholar 

  56. Linet, B.: Force on a charge in the space-time of a cosmic string. Phys. Rev. D 33, 1833 (1986)

    Article  ADS  Google Scholar 

  57. Helliwell, T.M., Konkowski, D.A.: Vacuum fluctuations outside cosmic strings. Phys. Rev. D 34, 1918 (1986)

    Article  ADS  Google Scholar 

  58. Dowker, J.S.: Casimir effect around a cone. Phys. Rev. D 36, 3095 (1987)

    Article  ADS  Google Scholar 

  59. Davies, P.C.W., Sahni, V.: Quantum gravitational effects near cosmic strings. Class. Quantum Gravity 51 (1988)

  60. Gal’tsov, D.V.: Are cosmic strings gravitationally sterile? Fortschr. Phys. 38, 945 (1990)

    Article  MathSciNet  Google Scholar 

  61. Aryal, M., Ford, L.H., Vilenkin, A.: Cosmic strings and black holes. Phys. Rev. D 34, 2263 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  62. Levi-Civita, T.: Rend. Acc. Lincei 27, 183 (1917)

    Google Scholar 

  63. Orlando, D., Reffert, S.: On the renormalizability of Hořava-Lifshitz-type gravities. Class. Quantum Gravity 26, 155021 (2009). arXiv:0905.0301 [hep-th]

    Article  ADS  Google Scholar 

  64. Deser, S., Yang, Z.: Is topologically massive gravity renormalizable? Class. Quantum Gravity 7, 1603–1612 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  65. Wang, A., Wands, D., Maartens, R.: Scalar field perturbations in Hořava-Lifshitz cosmology. JCAP 1003, 013 (2010). arXiv:0909.5167

    ADS  Google Scholar 

  66. Wang, A., Maartens, R.: Cosmological perturbations in Hořava-Lifshitz theory without detailed balance. Phys. Rev. D 81, 024009 (2010). arXiv:0907.1748

    Article  ADS  Google Scholar 

  67. Iorio, L., Ruggiero, M.L.: Hořava-Lifshitz gravity, extrasolar planets and the double pulsar, arXiv:0909.5355

  68. Iorio, L., Ruggiero, M.L.: Hořava-Lifshitz gravity and Solar System orbital motions, arXiv:0909.2562

  69. Li, M., Pang, Y.: A trouble with Hořava-Lifshitz gravity. JHEP 0908, 015 (2009). arXiv:0905.2751 [hep-th]

    ADS  MathSciNet  Google Scholar 

  70. Setare, M.R.: Interacting dark energy in Hořava-Lifshitz cosmology, arXiv:0909.0456

  71. Setare, M.R., Momeni, D.: Plane symmetric solutions in Hořava-Lifshitz theory. Int. J. Mod. Phys. D 19(13), 2079–2094 (2010). arXiv:0911.1877 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Cai, Y.-F., Zhang, X.: Phys. Rev. D 80, 043520 (2009). arXiv:0906.3341 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  73. Cai, R.G., Cao, L.M., Ohta, N.: Topological black holes in Hořava-Lifshitz gravity. Phys. Rev. D 80, 024003 (2009). arXiv:0904.3670 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  74. Cai, R.G., Cao, L.M., Ohta, N.: Thermodynamics of black holes in Hořava-Lifshitz gravity. Phys. Lett. B 679, 504 (2009). arXiv:0905.0751 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  75. Blas,a, D., Pujol’asb, O., Sibiryakova, S.: On the extra mode and inconsistency of Hořava gravity. JHEP 10, 029 (2009)

    Google Scholar 

  76. Stelle, K.S.: Classical gravity with higher derivatives. Gen. Relativ. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  77. Arkani-Hamed, N., Georgi, H., Schwartz, M.D.: Effective field theory for massive gravitons and gravity in theory space. Ann. Phys. 305, 96 (2003). hep-th/0210184

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Dubovsky, S.L.: Phases of massive gravity. JHEP 10, 076 (2004). hep-th/0409124

    Article  ADS  MathSciNet  Google Scholar 

  79. Blas, D., Comelli, D., Nesti, F., Pilo, L.: Lorentz breaking massive gravity in curved space. Phys. Rev. D 80, 044025 (2009). arXiv:0905.1699

    Article  ADS  MathSciNet  Google Scholar 

  80. Charmousis, C., Niz, G., Padilla, A., Saffin, P.M.: Strong coupling in Hořava gravity. JHEP 08, 070 (2009). arXiv:0905.2579

    Article  ADS  MathSciNet  Google Scholar 

  81. Kim, Y.-W., Lee, H.W., Myung, Y.S.: Nonpropagation of scalar in the deformed Hořava-Lifshitz gravity. Phys. Lett. B 682, 246–252 (2009). arXiv:0905.3423

    Article  ADS  MathSciNet  Google Scholar 

  82. Gao, X., Wang, Y., Brandenberger, R., Riotto, A.: Cosmological perturbations in Hořava-Lifshitz gravity. Phys. Rev. D 81, 083508 (2010). arXiv:0905.3821

    Article  ADS  Google Scholar 

  83. Li, M., Pang, Y.: A trouble with Hořava-Lifshitz gravity. JHEP 0908, 015 (2009). arXiv:0905.2751

    ADS  MathSciNet  Google Scholar 

  84. Lyra, G.: Math. Z. 54, 52 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  85. Reddy, D.R.K.: J. Phys. A. Math. Gen. 10, 55 (1977)

    Article  ADS  Google Scholar 

  86. Reddy, D.R.K.: Aust. J. Phys. 30, 109 (1977)

    Article  ADS  Google Scholar 

  87. Reddy, D.R.K.: Astrophys. Space Sci. 286, 365 (2003)

    Article  ADS  MATH  Google Scholar 

  88. Reddy, D.R.K.: Astrophys. Space Sci. 286, 359 (2003)

    Article  ADS  MATH  Google Scholar 

  89. Roy, S.R., Narain, S.: Indian J. Pure Appl. Math. 14(1), 96–107 (1983)

    MathSciNet  MATH  Google Scholar 

  90. Misra, M., Radhakrishna, L.: Proc. Nat. Inst. Sci. India, A 28(4), 632–645 (1962)

    MathSciNet  MATH  Google Scholar 

  91. Reddy, D.R.K., Innaiah, P.: Prve. Einstein Found. Intern. 2, 9 (1985)

    MathSciNet  Google Scholar 

  92. Reddy, D.R.K.: Astrophys. Space Sci. 140, 161 (1988)

    Article  ADS  MATH  Google Scholar 

  93. Bera, K.: J. Phys. A 2, 138 (1969)

    Article  ADS  Google Scholar 

  94. Dutta, S., Saridakis, E.N.: Observational constraints on Hořava-Lifshitz cosmology. Version published in JCAP, arXiv:0911.1435 [hep-th]

  95. Kim, S.-S., Kim, T., Kim, Y.: Surplus solid angle as an imprint of Hořava-Lifshitz gravity, arXiv:0907.3093 [hep-th]

  96. Harko, T., Kovacs, Z., Lobo, F.S.N.: Solar system tests of Hořava-Lifshitz gravity, arXiv:0908.2874 [hep-th]

  97. Dutta, S., Saridakis, E.N.: Overall observational constraints on the running parameter λ of Hořava-Lifshitz gravity. JCAP 1005, 013 (2010). arXiv:1002.3373 [hep-th]

    ADS  Google Scholar 

  98. Bogdanos, C., Saridakis, E.N.: Perturbative instabilities in Hořava gravity. Class. Quantum Gravity 27, 075005 (2010). doi:10.1088/0264-9381/27/7/075005. arXiv:0907.1636 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  99. Koyama, K., Arroja, F.: Pathological behaviour of the scalar graviton in Hořava-Lifshitz gravity. JHEP 1003, 061 (2010). arXiv:0910.1998 [hep-th]

    Article  ADS  Google Scholar 

  100. Colgain, E.O., Yavartanoo, H.: Dyonic solution of Hořava-Lifshitz gravity. JHEP 0908, 021 (2009) arXiv:0904.4357 [hep-th]

    Article  ADS  Google Scholar 

  101. Ghodsi, A.: Toroidal solutions in Hořava gravity, arXiv:0905.0836 [hep-th]

  102. Ghodsi, A., Hatefi, E.: Extremal rotating solutions in Hořava gravity. Phys. Rev D 81, 044016. arXiv:0906.1237 [hep-th]

  103. Leon, G., Saridakis, E.N.: Phase-space analysis of Hořava-Lifshitz cosmology. JCAP 0911, 006 (2009). arXiv:0909.3571 [hep-th]

    ADS  MathSciNet  Google Scholar 

  104. Wu, P., Yu, H.: Stability of the Einstein static universe in Hořava-Lifshitz gravity. Phys. Rev. D 81, 103522 (2010). arXiv:0909.2821 [hep-th]

    Article  ADS  Google Scholar 

  105. Cai, Y.-F., Saridakis, E.N.: Non-singular cosmology in a model of non-relativistic gravity. JCAP 0910, 020 (2009). arXiv:0906.1789 [hep-th]

    ADS  Google Scholar 

  106. Cho, I., Kang, G.: Four dimensional string solutions in Hořava-Lifshitz gravity, arXiv:0909.3065 [hep-th]

  107. Boehmer, C.G., Lobo, F.S.N.: Stability of the Einstein static universe in IR modified Hořava gravity, arXiv:0909.3986 [hep-th]

  108. Piao, Y.-S.: Primordial perturbations in Hořava-Lifshitz cosmology, arXiv:0904.4117 [hep-th]

  109. Jamil, M., Saridakis, E.N., Setare, M.R.: The generalized second law of thermodynamics in Hořava-Lifshitz cosmology. JCAP 11, 032 (2010). arXiv:1003.0876 [hep-th]

    ADS  MathSciNet  Google Scholar 

  110. Wang, A.: Phys. Rev. D 72, 108501 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Momeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momeni, D. Cosmic Strings in a Model of Non-relativistic Gravity. Int J Theor Phys 50, 1493–1514 (2011). https://doi.org/10.1007/s10773-010-0659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0659-9

Keywords

Navigation