Skip to main content

Advertisement

Log in

Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-Stage Tracking of Cosmological Nuclear Energy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recent observations on Type-Ia supernovae and low density (Ω m =0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type ‘exotic matter’ with negative-pressure often said ‘dark energy’ (Ω x =0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that ‘the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe’. It is also explained why for dark energy the parameter \(w=-\frac{2}{3}\) . Noting that w=1 for stiff matter and \(w=\frac{1}{3}\) for radiation; \(w=-\frac{2}{3}\) is for dark energy because “−1” is due to ‘deficiency of stiff-nuclear-matter’ and that this binding energy is ultimately released as ‘radiation’ contributing “ \(+\frac{1}{3}\) ”, making \(w=-1+\frac{1}{3}=-\frac{2}{3}\) . When dark energy is released free at Z=80, \(w=-\frac{2}{3}\) . But as on present day at Z=0 when the radiation-strength-fraction (δ), has diminished to δ→0, the \(w=-1+\delta\frac{1}{3}=-1\) . This, almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates/predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. Tonry, J.L., et al.: Astrophys. J. 594, 1 (2004)

    Article  ADS  Google Scholar 

  5. Garnavich, P., et al.: Astrophys. J. Lett. 493, L53 (1998)

    Article  ADS  Google Scholar 

  6. Schmidt, B.P., et al.: Astrophys. J. Lett. 507, 46 (1998)

    Article  ADS  Google Scholar 

  7. Bahcall, N.A., et al.: Science 284, 1481 (1991)

    Article  ADS  Google Scholar 

  8. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  9. Riess, A.G., et al.: Astron. J. 607, 665 (2004)

    Google Scholar 

  10. Ratra, B., Peebles, P.J.E.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  12. Frieman, J., Hill, C.T., Stebbins, A., Waga, I.: Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  13. Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1998)

    Article  ADS  Google Scholar 

  14. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  15. Brax, P., Martin, J.: Phys. Rev. D 61, 103502 (2000)

    Article  ADS  Google Scholar 

  16. Sahni, V., Sami, M., Souradeep, T.: Phys. Rev. D 65, 023518 (2002)

    Article  ADS  Google Scholar 

  17. Sami, M., Dadhich, N., Shiromizu, T.: Phys. Lett. B 568, 118 (2003)

    Article  MATH  ADS  Google Scholar 

  18. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  19. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. B 91, 071301 (2003)

    Article  ADS  Google Scholar 

  20. Onemli, V.K., et al.: Class. Quantum Gravity 19, 4607 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Onemli, V.K., et al.: Phys. Rev. D 70, 107301 (2004)

    Article  ADS  Google Scholar 

  22. Onemli, V.K., et al.: Class. Quantum Gravity 22, 59 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Sahni, V., Shtanov, Yu.V.: JCAP 0311, 014 (2003)

    MathSciNet  ADS  Google Scholar 

  24. Sahni, V.: arXiv:astro-ph/0502032

  25. Johri, V.B.: Class. Quantum Gravity 19, 5959 (2002)

    Article  MATH  ADS  Google Scholar 

  26. Johri, V.B.: Phys. Rev. D 70, 041303 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. Johri, V.B.: Pramanna J. Phys. 59, 1 (2002)

    Article  Google Scholar 

  28. Srivastava, S.K.: Phys. Lett. B 619, 1 (2005)

    Article  ADS  Google Scholar 

  29. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998)

    Article  ADS  Google Scholar 

  30. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 373 (2000) and references therein

    ADS  Google Scholar 

  31. Komatsu, E., et al.: Astrophys. J. Suppl. 180, 330 (2009)

    Article  ADS  Google Scholar 

  32. Jackiw, R.: arXiv:physics/0010042

  33. Bertolami, O., et al.: Mon. Not. R. Astron. Soc. 353, 329 (2004)

    Article  ADS  Google Scholar 

  34. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  35. Bilic, N., Tupper, G.B., Viollier, R.: Phys. Lett. B 535, 17 (2002)

    Article  MATH  ADS  Google Scholar 

  36. Avelino, C., Beca, L.M.G., Carvalho, J.P.M., de Martins, C.J.A.P., Pinto, P.: Phys. Rev. D 67, 023511 (2003)

    Article  ADS  Google Scholar 

  37. Capozziello, S.: Int. J. Mod. Phys. D 11, 483 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Caroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  39. Dolgov, A.D., Kawasaki, M.: Phys. Lett. B 573, 1 (2003)

    Article  MATH  ADS  Google Scholar 

  40. Nojiri, S., Odintsov, D.: Phys. Lett. A 19, 627 (2004)

    MATH  MathSciNet  Google Scholar 

  41. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  42. Abdalaa, M.C.B., Nojiri, S., Odintsov, S.D.: Class. Quantum Gravity 22, L35 (2005)

    Article  ADS  Google Scholar 

  43. Mena, O., Santiago, J., Weller, J.: Phys. Rev. Lett. 96, 041103 (2006)

    Article  ADS  Google Scholar 

  44. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Turner, M.S.: Nucl. Phys. B (Proc. Suppl.) 72, 69 (1999)

    Article  ADS  Google Scholar 

  47. Freedman, W.L., Turner, S.S.: Rev. Mod. Phys. 75, 1433 (2003)

    Article  ADS  Google Scholar 

  48. Wang, Y., Tegmark, M.: Phys. Rev. Lett. 92, 241302 (2004)

    Article  ADS  Google Scholar 

  49. Johri, V.B.: Phys. Rev. D 63, 103504 (2001)

    Article  ADS  Google Scholar 

  50. Ostriker, J.P., Steinhardt, P.I.: Quintessentia University. Scientific American, January (2001)

  51. Caldwell, R.R.: Physics web-Physics World—dark energy, May (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Pradhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.C., Pradhan, A. Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-Stage Tracking of Cosmological Nuclear Energy. Int J Theor Phys 49, 821–834 (2010). https://doi.org/10.1007/s10773-010-0261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0261-1

Keywords

Navigation