Skip to main content
Log in

Einstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation on manifolds enabled with nonholonomic distributions is considered. We prove that, for certain types of nonholonomic constraints, there are modelled effective Lagrangians which do not develop instabilities. It is also elaborated a linearization formalism for anholonomic noncommutative gravity theories models and analyzed the stability of stationary ellipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the Schwarzschild metric. We show how to construct nonholonomic distributions which remove instabilities in nonsymmetric gravity theories. It is concluded that instabilities do not consist a general feature of theories of gravity with nonsymmetric metrics but a particular property of some models and/or unconstrained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vacaru, S.: Einstein gravity, Lagrange–Finsler geometry, and nonsymmetric metrics on nonholonomic manifolds. SIGMA 4, 071 (2008). http://www.emis.de/journals/SIGMA/2008/071/sigma08-071.pdf, 29 pages, arXiv:0806.3810 [gr-qc]

    MathSciNet  Google Scholar 

  2. Vacaru, S.: Nonholonomic Ricci flows, exact solutions in gravity, and symmetric and nonsymmetric metrics. Int. J. Theor. Phys. 48, 579–606 (2009). arXiv:0806.3812 [gr-qc]

    Article  MATH  MathSciNet  Google Scholar 

  3. Vacaru, S.: Deformation quantization of nonholonomic almost Kähler models and Einstein gravity. Phys. Lett. A 372, 2949–2955 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Vacaru, S.: Einstein gravity as a nonholonomic almost Kähler geometry, Lagrange-Finsler variables, and deformation quantization. arXiv:0709.3609 [math-ph]

  5. Vacaru, S.: Parametric nonholonomic frame transforms and exact solutions in gravity. Int. J. Geom. Methods. Mod. Phys. (IJGMMP) 4, 1285–1334 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Vacaru, S.: Finsler and Lagrange geometries in Einstein and string gravity. Int. J. Geom. Methods. Mod. Phys. (IJGMMP) 5, 473–511 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Oproiu, V.A.: A Riemannian structure in Lagrange geometry. Rend. Semin. Fac. Sci. Univ. Cagliari 55, 1–20 (1985)

    MATH  MathSciNet  Google Scholar 

  8. Oproiu, V.A.: A Pseudo-Riemannian structure in Lagrange geometry. An. St. Univ. “Al. I. Cuza” Iaşi, Romania XXXIII(Ia), 1 (1987)

    Google Scholar 

  9. Oproiu, V.A.: A generalization of natural almost Hermitian structures on the tangent bundles. Math. J. Toyama Univ. 22, 1–14 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. Kaisisha, Shigaken (1986)

    MATH  Google Scholar 

  11. Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. FTPH, no. 59. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  12. Vacaru, S.: Deformation quantization of almost Kähler models and Lagrange–Finsler spaces. J. Math. Phys. 48, 123509 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Anastasiei, M., Vacaru, S.: Fedosov quantization of Lagrange–Finsler and Hamilton–Cartan spaces and Einstein gravity lifts on (co) tangent bundles. J. Math. Phys. 50, 013510 (2009). arXiv:0710.3079 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  14. Vacaru, S.: Loop quantum gravity in Ashtekar and Lagrange–Finsler variables and Fedosov quantization of general relativity. arXiv:0801.4942 [gr-qc]

  15. Vacaru, S.: Nonholonomic Ricci flows: II. Evolution equations and dynamics. J. Math. Phys. 49, 043504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Vacaru, S.: Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. arXiv:0806.3814 [math-ph]

  17. Einstein, A.: Einheitliche Fieldtheorie von Gravitation and Electrizidät, Sitzungsberichte der Preussischen Akademie Wissebsgaften, Mathematischn–Naturwissenschaftliche Klasse. 414–419 (1925); translated in English by A. Unzicker and T. Case, Unified Field Theory of Gravitation and Electricity, session report from July 25, 1925, pp. 214–419. arXiv:physics/0503046 and http://www.lrz-muenchen.de/aunzicker/ae1930.html

  18. Einstein, A.: A generalization of the relativistic theory of gravitation. Ann. Math. 46, 578–584 (1945)

    Article  MathSciNet  Google Scholar 

  19. Eisenhart, L.P.: Generalized Riemann spaces. I. Proc. Natl. Acad. USA 37, 311–314 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Eisenhart, L.P.: Generalized Riemann spaces. II. Proc. Natl. Acad. USA 38, 505–508 (1952)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Moffat, J.W.: New theory of gravity. Phys. Rev. D 19, 3554–3558 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  22. Moffat, J.W.: Review of nonsymmetric gravitational theory. In: Mann, R.B., Wesson, P. (eds.) Proceedings of the Summer Institute on Gravitation, Banff Centre, Banff, Canada. World Scientific, Singapore (1991)

    Google Scholar 

  23. Moffat, J.W.: Nonsymmetric gravitational theory. Phys. Lett. B 355, 447–452 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Moffat, J.W.: Nonsymmetric gravitational theory. J. Math. Phys. 36, 3722–3232 (1995); Erratum–ibid

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Moffat, J.W.: Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. Phys. 05, 003 (2005). astro-ph/0412195

    Article  ADS  MathSciNet  Google Scholar 

  26. Moffat, J.W.: Late-time inhomogeneity and acceleration without dark energy. J. Cosmol. Astropart. Phys. 0605, 001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Moffat, J.W., Toth, V.T.: Testing modified gravity with globular cluster velocity dispersions. arXiv:0708.1935 (2007)

  28. Castro, C.: Born’s reciprocal general relativity theory and complex nonabelian gravity as gauge theory of the quaplectic group: A novel path to quantum gravity. Int. J. Mod. Phys. A 23, 1487–1506 (2008)

    Article  MATH  ADS  Google Scholar 

  29. Miron, R., Atanasiu, Gh.: Existence et arbitrariete des conexions compatible a une structure Riemann generalise du type k-horsympletique. Kotai Math. J. 6, 228–237 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Atanasiu, Gh., Hashiguchi, M., Miron, R.: Supergeneralized Finsler spaces. Rep. Fac. Sci. Kagoshim Univ. 18, 19–34 (1985)

    MATH  MathSciNet  Google Scholar 

  31. Janssen, T., Prokopec, T.: Instabilities in the nonsymmetric theory of gravitation. Class. Quantum Gravity 23, 4967–4882 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Janssen, T., Prokopec, T.: Problems and hopes in nonsymmetric gravity. J. Phys. A 40, 7067–7074 (2007)

    Article  ADS  Google Scholar 

  33. Janssen, T., Prokopec, T.: Vacuum properties of nonsymmetric gravity in de Sitter space, J. Cosmol. Astropart. Phys. (2007) 0705:010

    Google Scholar 

  34. Damour, T., Deser, S., McCarthy, J.G.: Nonsymmetric gravity theories: Inconsistencies and a cure. Phys. Rev. D 47, 1541–1556 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  35. Clayton, M.A.: Massive NGT and spherically symmetric systems. J. Math. Phys. 37, 2851–2864 (1996)

    Article  MathSciNet  Google Scholar 

  36. Clayton, M.A.: Linearisation instabilities of the massive nonsymmetric gravitational theory. Class. Quantum Gravity 13, 2851–2864 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Isenberg, J.A., Nestor, J.: The effect of a gravitational interaction on classical fields: A Hamiltonian–Dirac analysis. Ann. Phys. 107, 56–81 (1977)

    Article  ADS  Google Scholar 

  38. Moffat, J.W.: Dynamical constraints in the nonsymmetric gravitational theory. gr-qc/9605016 (1996)

  39. Vacaru, S.: Finsler–Lagrange geometries and standard theories in physics: new methods in Einstein and string gravity. arXiv:0707.1524

  40. Vacaru, S., Stavrinos, P., Gaburov, E., Gonţa, D.: Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity. Selected Works, Differential Geometry—Dynamical Systems, Monograph, vol. 7. Geometry Balkan Press, Bucharest (2006). www.mathem.pub.ro/dgds/mono/va-t.pdf and gr-qc/0508023

    MATH  Google Scholar 

  41. Vacaru, S.: Horizons and geodesics of black ellipsoids. Int. J. Mod. Phys. D 12, 479–494 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Vacaru, S.: Perturbations and stability of black ellipsoids. Int. J. Mod. Phys. D 12, 461–478 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Vacaru, S.: Exact solutions with noncommutative symmetries in Einstein and gauge gravity. J. Math. Phys. 46, 042503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. Nicolini, P.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547–551 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. Nicolini, P.: Noncommutative black holes. The final appeal to quantum gravity: A review. arXiv:0807.1939 [hep-th]

  46. van Nieuwnehuizen, P.: On ghost-free tensor Lagrangians and linearized gravitation. Nucl. Phys. B 60, 478–492 (1973)

    Article  ADS  Google Scholar 

  47. Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacaru, S.I. Einstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics. Int J Theor Phys 48, 1973–1999 (2009). https://doi.org/10.1007/s10773-009-9973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-9973-5

Keywords

Navigation