Skip to main content
Log in

Gravitational Gauge Theory Developed Based on the Stephenson-Kilmister-Yang Equation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A Yang-Mills formulation of Einstein gravity with spin-affine connection as the dynamical variable of gravitational field is suggested based on the Stephenson-Kilmister-Yang (SKY) equation. A physically interesting property of the present formalism is that the Einstein field equation appears as a first-integral solution to the Yang-Mills type gravitational gauge field equation. The gravitational current density, the law of conservation and the gravitational gauge field strength in vierbein formulation are discussed. The present scheme could provide us with new insight into a possible way to include both Yang-Mills field and gravitational gauge field into one framework of generalized vierbein fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.L., et al.: Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  2. Tonry, J.L., et al.: Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  3. Tegmark, M., et al.: Astrophys. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  4. Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. Lett. 81, 2858 (1998)

    Article  ADS  Google Scholar 

  5. Robbers, G., Afshordi, N., Doran, M.: Phys. Rev. Lett. 100, 111101 (2008)

    Article  ADS  Google Scholar 

  6. Brax, P., van de Bruck, C., Davis, A.-C.: Phys. Rev. Lett. 99, 121103 (2007)

    Article  ADS  Google Scholar 

  7. Kunstatter, G., Yates, R.: J. Phys. A 14, 847 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. Blagojevič, M., Vasilič, M.: arXiv:gr-qc/0301051 (2003). [See also in: Blagojevič, M., Vasilič, M.: Phys. Rev. D 67, 084032 (2003)]

  9. Arcos, H.I., Pereira, J.G.: arXiv:gr-qc/0501017 (2005). [See also in: Arcos, H.I., Pereira, J.G.: Int. J. Mod. Phys. D 13, 2193 (2004)]

  10. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  11. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976), and references therein

    Article  ADS  Google Scholar 

  12. Utiyama, R.: Phys. Rev. 101, 1597 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Hou, B.Y., Hou, B.Y.: Differential Geometry for Physicists. Science Press of China, Beijing (1990). Chap. 4

    Google Scholar 

  14. Hou, B.Y., Hou, B.Y.: Differential Geometry for Physicists, 2nd edn. Science Press of China, Beijing (2004). Chap. 4

    Google Scholar 

  15. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004), pp. 33–36

    MATH  Google Scholar 

  16. Yang, C.N.: Phys. Rev. Lett. 33, 445 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pavelle, R.: Phys. Rev. Lett. 33, 1461 (1974)

    Article  ADS  Google Scholar 

  18. Thompson, A.H.: Phys. Rev. Lett. 35, 320 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  19. Stephenson, G.: Nuovo Cim. 9, 263 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pavelle, R.: Phys. Rev. Lett. 34, 1114 (1975)

    Article  ADS  Google Scholar 

  21. Thompson, A.H.: Phys. Rev. Lett. 34, 507 (1975)

    Article  ADS  Google Scholar 

  22. Ni, W.T.: Phys. Rev. Lett. 35, 319 (1975)

    Article  ADS  Google Scholar 

  23. Camenzind, M.: Phys. Rev. D 18, 1068 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. Camenzind, M.: Phys. Rev. Lett. 18, 1188 (1975)

    Article  ADS  Google Scholar 

  25. Camenzind, M.: J. Math. Phys. 19, 624 (1978)

    Article  ADS  Google Scholar 

  26. Shen, J.Q.: Gen. Relativ. Gravit. 34, 1423 (2002)

    Article  MATH  Google Scholar 

  27. Shen, J.Q.: Dual curvature tensors and dynamics of gravitomagnetic matter. In: Reimer, A. (ed.) Quantum Gravity Research Trends. Nova Science Publishers, New York (2006). Chap. 10

    Google Scholar 

  28. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press, New York (1995). Chap. 3

    Google Scholar 

  29. Ke, S.Z., Cai, J.H.: Quantum Mechanics (II): Advanced Quantum Mechanics. High Education Press of China, Beijing (1992). Chap. 7

    Google Scholar 

  30. Shen, J.Q.: Int. J. Theor. Phys. 47, 751 (2008)

    Article  MATH  Google Scholar 

  31. Aldaya, V., Sánchez-Sastre, E.: J. Phys. A 39, 1729 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Raychaudhuri, A.K.: Phys. Rev. D 12, 952 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  33. Prasanna, A.R.: Phys. Rev. D 11, 2076 (1975)

    Article  ADS  Google Scholar 

  34. Ivanenko, D., Budylin, S., Pronin, P.: Ann. Phys. (Leipzig) 500, 191 (2006)

    ADS  Google Scholar 

  35. Shen, J.Q.: Phys. Rev. D 70, 067501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Qi Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.Q. Gravitational Gauge Theory Developed Based on the Stephenson-Kilmister-Yang Equation. Int J Theor Phys 48, 1566–1582 (2009). https://doi.org/10.1007/s10773-009-9929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-009-9929-9

Keywords

Navigation