Skip to main content
Log in

Anomalies and Hawking Radiation of NUT-Kerr-Newman de Sitter Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Hawking radiation of NUT-Kerr-Newman de Sitter black hole is studied via anomalous point of view in this paper. The results show that the charged current and energy-momentum tensor fluxes, to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, are exactly equal to those of Hawking radiation from the event horizon (EH) and the cosmological horizon (CH) of NUT-Kerr-Newman de Sitter black hole, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wu, S.Q., Cai, X.: Non-existence of new quantum ergosphere effect of a Vaidya-type black hole. Mod. Phys. Lett. A 16, 1549 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Parikh, M.K.: New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B 546, 189 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Ren, J., Zhao, Z., Gao, C.J.: Hawking radiation via tunnelling from arbitrarily dimensional Schwarzschild black holes. Chin. Phys. Lett. 22, 2489 (2005)

    Article  ADS  Google Scholar 

  4. Ren, J., Zhang, J.Y., Zhao, Z.: Tunnelling effect and Hawking radiation from a Vaidya black hole. Chin. Phys. Lett. 23, 2019 (2006)

    Article  ADS  Google Scholar 

  5. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Liu, M.Q., Yang, S.Z.: Tunneling radiation of the charged particles for charged spherical black hole in VGM. Int. J. Theor. Phys. 46, 63 (2007)

    Article  Google Scholar 

  7. Han, Y.W.: Massive particles’ tunnelling radiation from the black hole with a mass-quadruple moment. Chin. Phys. 16, 0923 (2007)

    Article  ADS  Google Scholar 

  8. Yang, S.Z., Jiang, Q.Q.: Research on Hawking radiation as tunneling from Schwarzschild-anti-de Sitter black hole. Int. J. Theor. Phys. 46, 2138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, X.X., Yang, S.Z.: Casimir effect under two dimensional black hole spacetime background with global monopole. Int. J. Theor. Phys. 46, 1797 (2007)

    Article  MATH  Google Scholar 

  10. Zhang, J.Y., Zhao, Z.: New coordinates for the evaporating Vaidya black hole. Chin. Phys. Lett. 23, 1099 (2006)

    Article  ADS  Google Scholar 

  11. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  12. Robinson, S.P., Frank, W.: Relationship between Hawking radiation and gravitational anomalies. Phys. Rev. Lett. 95, 011303 (2005). gr-qc/0502074

    Article  ADS  MathSciNet  Google Scholar 

  13. Jiang, Q.Q., Wu, S.Q., Cai, X.: Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jiang, Q.Q., Wu, S.Q., Cai, X.: Hawking radiation from dilatonic black holes via anomalies. Phys. Rev. D 75, 064029 (2007)

    ADS  MathSciNet  Google Scholar 

  15. Lin, K., Zeng, X.X., Yang, S.Z.: Hawking radiation from topological Kerr-Anti-de Sitter black hole with one rotational parameter via covariant anomalies. Chin. Phys. Lett. 25, 390 (2008)

    Article  ADS  Google Scholar 

  16. Zeng, X.X., Chen, D.Y., Yang, S.Z.: Quantum anomaly at horizon and Hawking radiation from higher dimensional Reissner-Nordström de Sitter black hole. Gen. Relativ. Gravit. (2007). DOI:10.1007/s10714-007-0543-y

    Google Scholar 

  17. Jiang, Q.Q., Wu, S.Q.: Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies. Phys. Lett. B 647, 200 (2007). hep-th/0701002

    Article  ADS  MathSciNet  Google Scholar 

  18. Wu, S.Q., Peng, J.J.: Anomalies and Hawking radiation from the Reissner-Nordström black hole with a global monopole. Class. Quantum Gravity 24, 5123 (2007). arXiv:0706.0983

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Iso, S., Umetsu, H., Wilczek, F.: Anomalies, Hawking radiations and regularity in rotating black holes. Phys. Rev. D 74, 044017 (2006). hep-th/0606018

    Article  ADS  MathSciNet  Google Scholar 

  20. Murata, K., Sod, J.: Hawking radiation from rotating black holes and gravitational anomalies. Phys. Rev. D 74, 044018 (2006). hep-th/0606069

    ADS  MathSciNet  Google Scholar 

  21. Ahmed, M.: Hawking radiation of Dirac particles in the hot NUT-Kerr-Newman spacetime. Phys. Lett. B 258, 318 (1991)

    ADS  MathSciNet  Google Scholar 

  22. Ge, X.H., Shen, Y.G.: Entropy in the NUT Kerr Newman black holes due to an arbitrary spin field. Class. Quantum Gravity 20, 3593 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Bertlmann, R., Kohlprath, E.: Two-dimensional gravitational anomalies, Schwinger terms and dispersion relations. Ann. Phys. (NY) 288, 137 (2001). hep-th/0011067

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, K., Chen, S.W. & Yang, S.Z. Anomalies and Hawking Radiation of NUT-Kerr-Newman de Sitter Black Hole. Int J Theor Phys 47, 2453–2463 (2008). https://doi.org/10.1007/s10773-008-9679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-008-9679-0

Keywords

Navigation