Skip to main content
Log in

Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The pentalogy (Mallios, A. and Raptis, I. (2001). International Journal of Theoretical Physics 40, 1885; Mallios, A. and Raptis, I. (2002). International Journal of Theoretical Physics 41, 1857; Mallios, A. and Raptis, I. (2003).International Journal of Theoretical Physics 42, 1479; Mallios, A. and Raptis, I. (2004). ‘paper-book’/research monograph); I. Raptis (2005). International Journal of Theoretical Physics (to appear)is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantumcausal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure . We show that the category of finitary differential triads is a finitary instance of an elementary topos proper in the original sense dueto Lawvere and Tierney. We present in the light of Abstract Differential Geometry (ADG) a Grothendieck-type of generalization of Sorkin’s finitary substitutes of continuous spacetime manifoldtopologies, the latter’s topological refinement inverse systems of locally finite coverings and their associated coarse graining sieves, the upshot being that is also a finitary example of a Grothendieck topos. In the process, we discover that the subobject classifier Ω fcq of is a Heyting algebra type of object, thus we infer that the internal logic of our finitary topos is intuitionistic, as expected. We also introduce the new notion of ‘finitary differential geometric morphism’ which, as befits ADG, gives a differential geometric slant to Sorkin’s purely topological acts of refinement (:coarse graining). Based on finitary differential geometric morphisms regarded as natural transformations of the relevant sheaf categories, we observe that the functorial ADG-theoretic version of the principle of general covariance of GeneralRelativity is preserved under topological refinement. The paper closes with a thorough discussion of four future routes we could take in order to further develop our topos-theoretic perspective on ADG-gravity along certain categorical trends in current quantum gravity research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, M. (1997). Combinatorial theory, Classics in Mathematics (Series), Springer-Verlag, Berlin-London.

    Google Scholar 

  • Barrett, J. W. and Crane, L. (1997). Relativistic Spin Networks and Quantum Gravity, pre-print; gr-qc/9709028.

  • Butterfield, J., Hamilton, J., and Isham, C. J. (2000). A Topos Perspective on the Kochen-Specker Theorem: III. Von Neumann Algebras as the Base Category. International Journal of Theoretical Physics 39, 2667.

    Article  MathSciNet  Google Scholar 

  • Butterfield, J. and Isham, C. J. (1998). A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37, 2669.

    Article  MATH  MathSciNet  Google Scholar 

  • Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues. International Journal of Theoretical Physics 38, 827.

    Article  MATH  MathSciNet  Google Scholar 

  • Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of Physics 30, 1707.

    Article  MathSciNet  Google Scholar 

  • Connes, A. (1994). Noncommutative Geometry, Academic Press, New York.

    MATH  Google Scholar 

  • Christensen, J. D. and Crane, L. (2004). Causal sites as quantum geometry, pre-print; gr-qc/0410104.

  • Crane, L. (1995). Clock and category: Is quantum gravity algebraic? Journal of Mathematical Physics 36, 6180.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dimakis, A. and Müller-Hoissen, F. (1994). Discrete differential calculus: Graphs, topologies and gauge theory. Journal of Mathematical Physics 35, 6703.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dimakis, A. and Müller-Hoissen, F. (1999). Discrete riemannian geometry. Journal of Mathematical Physics 40, 1518.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dimakis, A., Müller-Hoissen, F., and Vanderseypen, F. (1995). Discrete differential manifolds and dynamics of networks. Journal of Mathematical Physics 36, 3771.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Douglas, R. G. (1989). Hilbert modules over function algebras, Longman Scientific and Technical, London.

    MATH  Google Scholar 

  • Goldblatt, R. (1984). Topoi: The Categorial Analysis of Logic, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Finkelstein, D. (1988). ‘Superconducting’ causal nets. International Journal of Theoretical Physics 27, 473.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Finkelstein, D. (1989). Quantum net dynamics. International Journal of Theoretical Physics 28, 441.

    Article  MathSciNet  Google Scholar 

  • Finkelstein, D. (1991). Theory of vacuum. In Saunders, S. and Brown, H. (eds.), The Philosophy of Vacuum, Clarendon Press, Oxford.

  • Finkelstein, D. R. (1996). Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg, Springer-Verlag, Berlin-Heidelberg-New York.

  • Fränkel, A. H. (1954). The Intuitionistic Revolution in Mathematics and Logic. Bulletin of the Research Council of Israel 3, 283.

    Google Scholar 

  • Grinkevich, E. B. (1996). Synthetic differential geometry: A way to intuitionistic models of general relativity in toposes pre-print; gr-qc/9608013.

  • Guts, A. K. (1991). A topos-theoretic approach to the foundations of relativity theory. Soviet Mathematics (Doklady) 43, 904.

    MATH  MathSciNet  Google Scholar 

  • Guts, A. K. (1995a). Axiomatic causal theory of space-time. Gravitation and Cosmology 1, 301.

    Google Scholar 

  • Guts, A. K. (1995b). Causality in micro-linear theory of space-time. In: Groups in Algebra and Analysis, Conference in Omsk State University, Omsk Publications, 33.

  • Guts, A. K. and Demidov, V. V. (1993). Space-time as a Grothendieck topos, Abstracts of the 8th Russian Conference on Gravitation, Moscow, p. 40.

  • Guts, A. K. and Grinkevich, E. B. (1996). Toposes in General Theory of Relativity pre-print; gr-qc/9610073.

  • Isham, C. J. (1989). Quantum topology and the quantisation on the lattice of topologies. Classical and Quantum Gravity 6, 1509.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Isham, C. J. (1991). Canonical groups and the quantization of geometry and topology. In Ashtekar, A. and Stachel, J. (eds.), Conceptual Problems of Quantum Gravity, Birkhäuser, Basel.

  • Isham, C. J. (1997). Topos theory and consistent histories: The internal logic of the set of all consistent sets. International Journal of Theoretical Physics 36, 785.

    Article  MATH  MathSciNet  Google Scholar 

  • Isham, C. J. (2003a). Some reflections on the status of conventional quantum theory when applied to quantum gravity. In Gibbons, G. W., Shellard, E. P. S., and Rankin, S. J. (Eds.), The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s 60th Birthday, Cambridge University Press, Cambridge; quant-ph/0206090.

  • Isham, C. J. (2003b). A new approach to quantising space-time: I. Quantising on a general category. Advances in Theoretical and Mathematical Physics 7, 331; gr-qc/0303060.

    Google Scholar 

  • Isham, C. J. (2004a). A new approach to quantising space-time: II. Quantising on a category of sets. Advances in Theoretical and Mathematical Physics 7, 807; gr-qc/0304077.

    Google Scholar 

  • Isham, C. J. (2004b). A new approach to quantising space-time: III. State vectors as functions on arrows. Advances in Theoretical and Mathematical Physics 8, 797; gr-qc/0306064.

    Google Scholar 

  • Isham, C. J. (2005). Quantising on a category, to appear in A Festschrift for James Cushing; quant-ph/0401175.

  • Kato, G. (1991). Cohomology and D-modules. In Guenot, J. and Struppa, D. C. (eds.), Seminars in Complex Analysis and Geometry 1989/90, Vol. 10(1), Mediterranean Press.

  • Kato, G. (2003). Kohomolojii No Kokoro, Iwanami-Shoten Publishers, Tokyo.

  • Kato, G. (2004). Elemental principles of temporal topos. Europhysics Letters 68, 467.

    Article  ADS  MathSciNet  Google Scholar 

  • Kato, G. (2005). Presheafification of time, space and matter. Europhysics Letters 71, 172 (2005).

    Google Scholar 

  • Kato, G. and Struppa, D. C. (1999). Fundamentals of Algebraic Microlocal Analysis, Marcel Dekker, New York-Basel-Hong Kong.

  • Kock, A. (1981). Synthetic Differential Geometry, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Kock, A. and Reyes, G. E. (1979). Connections in formal differential geometry. In Topos Theoretic Methods in Geometry, Aarhus Mathematical Institute Various Publications Series, vol. 30, P. 158.

  • Kopperman, R. D. and Wilson, R. G. (1997). Finite approximation of compact hausdorff spaces. Topology Proceedings 22, 175.

    Google Scholar 

  • Lambek, J. and Scott, P. J. (1986). Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Lavendhomme, R. (1996). Basic Concepts of Synthetic Differential Geometry, Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  • Lawvere, F. W. (1975). Continuously variable sets: Algebraic geometry = geometric logic. In: Proceedings of the Logic Colloquium in Bristol (1973), North-Holland, Amsterdam.

  • MacLane, S. and Moerdijk, I. (1992). Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Springer-Verlag, New York.

    Google Scholar 

  • Mallios, A. (1988). On the existence of \(\mathcal{A}\)-connections. Abstracts of the American Mathematical Society 9, 509.

    Google Scholar 

  • Mallios, A. (1989). \(\mathcal{A}\)-connections as splitting extensions. Abstracts of the American Mathematical Society 10, 186.

    Google Scholar 

  • Mallios, A. (1992). On an abstract form of Weil’s integrality theorem. Note di Matematica 12, 167. (invited paper).

    Google Scholar 

  • Mallios, A. (1993). The de Rham-Kähler complex of the Gel’fand sheaf of a topological algebra. Journal of Mathematical Analysis and Applications 175, 143.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. (1998a). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, Vols. 1–2, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mallios, A. (1998b). On an axiomatic treatment of differential geometry via vector sheaves. applications. Mathematica Japonica (International Plaza) 48, 93. (invited paper).

  • Mallios, A. (1999). On an axiomatic approach to geometric prequantization: A classification scheme à la Kostant-Souriau-Kirillov. Journal of Mathematical Sciences (New York) 95, 2648. (invited paper).

    Google Scholar 

  • Mallios, A. (2001). Abstract differential geometry, general relativity and singularities. In Abe, J. M. and Tanaka, S. (eds.), Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Iséki’s 80th Birthday, Vol. 77, IOS Press, Amsterdam. (invited paper).

  • Mallios, A. (2004). K-Theory of topological algebras and second quantization. Acta Universitatis Ouluensis–Scientiae Rezum Naturalium A408, 145; math-ph/0207035.

  • Mallios, A. (2002). Abstract differential geometry, singularities and physical applications. In Strantzalos, P. and Fragoulopoulou, M. (eds.), Topological Algebras with Applications to Differential Geometry and Mathematical Physics, in Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Department of Mathematics, University of Athens Publications.

  • Mallios, A. (2003). Remarks on “singularities,” to appear in the volume Progress in Mathematical Physics, Columbus, F. (ed.), Nova Science Publishers, Hauppauge, New York (invited paper); gr-qc/0202028.

  • Mallios, A. (2004). Geometry and physics of today, pre-print; physics/0405112.

  • Mallios, A. (2005a). Quantum gravity and “singularities,” Note di Matematica, in press (invited paper); physics/0405111.

  • Mallios, A. (2005b). Modern Differential Geometry in Gauge Theories, 2-volume continuation of Mallios (1998a): Vol. 1 Maxwell Fields, Vol. 2 Yang-Mills Fields. (forthcoming by Birkhäuser, Basel-New York)

  • Mallios, A. and Raptis, I. (2001). Finitary Spacetime Sheaves of Quantum Causal Sets: Curving Quantum Causality. International Journal of Theoretical Physics 40, 1885; gr-qc/0102097.

    Google Scholar 

  • Mallios, A. and Raptis, I. (2002). Finitary Čech-de Rham Cohomology: much ado without ℂ-smoothness. International Journal of Theoretical Physics 41, 1857; gr-qc/0110033.

    Google Scholar 

  • Mallios, A. and Raptis, I. (2003). Finitary, causal and quantal vacuum einstein gravity. International Journal of Theoretical Physics 42, 1479; gr-qc/0209048.

    Google Scholar 

  • Mallios, A. and Raptis, I. (2004). ℂ-Smooth Singularities Exposed: Chimeras of the Differential Spacetime Manifold, ‘paper-book’/research monograph; gr-qc/0411121.

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions and de rham cohomology. Acta Applicandae Mathematicae 55, 231.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de rham cohomology. Acta Applicandae Mathematicae 67, 59.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2002). Dense singularities and de rham cohomology. In: Strantzalos, P. and Fragoulopoulou, M. (Eds.), Topological Algebras with Applications to Differential Geometry and Mathematical Physics, in Proceedings of a Fest-Colloquium in Honour of Professor Anastasios Mallios (16–18/9/1999), Department of Mathematics, University of Athens Publications.

  • Markopoulou, F. (2000). The internal description of a causal set: what the universe looks like from the inside. Communication in Mathematical Physics 211, 559.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Papatriantafillou, M. H. (2000). The category of differential triads. In Proceedings of the 4th Panhellenic Conference on Geometry (Patras, 1999). Bulletin of the Greek Mathematical Society 44, 129.

  • Papatriantafillou, M. H. (2001). Projective and inductive limits of differential triads. In Steps in Differential Geometry, Proceedings of the Institute of Mathematics and Informatics Debrecen (Hungary), p. 251.

  • Papatriantafillou, M. H. (2003a). Initial and final differential structures. In Proceedings of the International Conference on Topological Algebras and Applications: ‘Non-normed Topological Algebras’, Rabat, Maroc; ENST publications 2, 115 (2004).

  • Papatriantafillou, M. H. (2003b). On a universal property of differential triads, pre-print.

  • Papatriantafillou, M. H. (2004). Abstract Differential Geometry. A Categorical Perspective (book in preparation).

  • Raptis, I. (1996). Axiomatic quantum timespace structure: A preamble to the quantum topos conception of the vacuum. Ph.D. Thesis, Physics Department, University of Newcastle upon Tyne, UK.

  • Raptis, I. (2000a). Algebraic quantization of causal sets. International Journal of Theoretical Physics 39, 1233; gr-qc/9906103.

  • Raptis, I. (2000b). Finitary spacetime sheaves. International Journal of Theoretical Physics 39, 1703; gr-qc/0102108.

    Google Scholar 

  • Raptis, I. (2001a). Non-Commutative Topology for Curved Quantum Causality, pre-print; gr-qc/0101082.

  • Raptis, I. (2001b). Sheafifying Consistent Histories, pre-print; quant-ph/0107037.

  • Raptis, I. (2001c). Presheaves, sheaves and their topoi in quantum gravity and quantum logic. Paper version of a talk titled “Reflections on a Possible ‘Quantum Topos’ Structure Where Curved Quantum Causality Meets ‘Warped’ Quantum Logic” given at the 5th biannual International Quantum Structures Association Conference in Cesena, Italy (March-April 2001); pre-print; gr-qc/0110064.

  • Raptis, I. (2003). Quantum Space-Time as a Quantum Causal Set, to appear in the volume Progress in Mathematical Physics, Columbus, F. (ed.), Nova Science Publishers, Hauppauge, New York (invited paper); gr-qc/0201004.

  • Raptis, I. (2005). Finitary-algebraic ‘Resolution’ of the inner schwarzschild singularity. International Journal of Theoretical Physics (to appear); gr-qc/0408045.

  • Raptis, I. and Zapatrin, R. R. (2000). Quantization of discretized spacetimes and the correspondence principle. International Journal of Theoretical Physics 39, 1; gr-qc/9904079.

    Google Scholar 

  • Raptis, I. and Zapatrin, R. R. (2001). Algebraic description of spacetime foam. Classical and Quantum Gravity 20, 4187; gr-qc/0102048.

    Google Scholar 

  • Rawling, J. P. and Selesnick, S. A. (2000). Orthologic and quantum logic. Models and computational elements. Journal of the Association for Computing Machinery 47, 721.

    MathSciNet  Google Scholar 

  • Rosinger, E. E. (1990). Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions, North-Holland, Amsterdam.

    Google Scholar 

  • Rosinger, E. E. (1999a). Space-time foam differential algebras of generalized functions and a global Cauchy-Kovaleskaya theorem, Technical Report UPWT 99/8, Department of Mathematics, University of Pretoria, Republic of South Africa.

  • Rosinger, E. E. (1999b). Differential algebras with dense singularities on manifolds, Technical Report UPWT 99/9, Department of Mathematics, University of Pretoria, Republic of South Africa (1999).

  • Rosinger, E. E. (2002). Dense singularities and non-linear partial differential equations, monograph (to appear).

  • Selesnick, S. A. (1983). Second quantization, projective modules, and local gauge invariance. International Journal of Theoretical Physics 22, 29.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Selesnick, S. A. (1991). Correspondence principle for the quantum net. International Journal of Theoretical Physics 30, 1273.

    Article  MathSciNet  Google Scholar 

  • Selesnick, S. A. (1994). Dirac’s equation on the quantum net. Journal of Mathematical Physics 35, 3936.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Selesnick, S. A. (1995). Gauge Fields on the Quantum Net. Journal of Mathematical Physics 36, 5465.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Selesnick, S. A. (2004). Quanta, Logic and Spacetime, 2nd revised and expanded edition, World Scientific, Singapore.

  • Selesnick, S. A. (2000). Private correspondence.

  • Sorkin, R. D. (1991). Finitary substitute for continuous topology. International Journal of Theoretical Physics 30, 923.

    Article  MATH  MathSciNet  Google Scholar 

  • Sorkin, R. D. (1995). A specimen of theory construction from quantum gravity. In Leplin, J. (Ed.), The Creation of Ideas in Physics, Kluwer Academic Publishers, Dordrecht; gr-qc/9511063.

  • Stachel, J. J. (1993). The other einstein: Einstein contra field theory, In Beller, M., Cohen, R. S., and Renn, J. (Eds.), Einstein in Context, Cambridge University Press, Cambridge.

  • Stanley, R. P. (1986). Enumerative Combinatorics, Wadsworth and Brook, Monterey, California.

    Book  MATH  Google Scholar 

  • Trifonov, V. (1995) A linear solution of the four-dimensionality problem. Europhysics Letters 32, 621.

    MathSciNet  Google Scholar 

  • Vassiliou, E. (1994). On Mallios’ \(\mathcal{A}\)-connections as connections on principal sheaves. Note di Matematica 14, 237.

    MATH  MathSciNet  Google Scholar 

  • Vassiliou, E. (1999). Connections on principal sheaves. In Szenthe, J. (ed.), New Developments in Differential Geometry, Kluwer Academic Publishers, Dordrecht.

  • Vassiliou, E. (2000). On the geometry of associated sheaves. Bulletin of the Greek Mathematical Society 44, 157.

    MATH  MathSciNet  Google Scholar 

  • Vassiliou, E. (2005). Geometry of Principal Sheaves, Springer-Verlag, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Zafiris, E. (2001). Probing quantum structure through boolean localization systems for measurement of observables. International Journal of Theoretical Physics 39, 12.

    MathSciNet  Google Scholar 

  • Zafiris, E. (2004). Quantum observables algebras and abstract differential geometry. pre-print; gr-qc/0405009.

  • Zapatrin, R. R. (1996). Polyhedral representations of discrete differential manifolds, pre-print (1996); dg-ga/9602010.

  • Zapatrin, R. R. (1998). Finitary algebraic superspace. International Journal of Theoretical Physics 37, 799.

    Article  MATH  MathSciNet  Google Scholar 

  • Zapatrin, R. R. (2001a). Incidence algebras of simplicial complexes. Pure Mathematics and its Applications 11, 105; math.CO/0001065.

  • Zapatrin, R. R. (2001b). Continuous limits of discrete differential manifolds, pre-print.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Raptis.

Additional information

PACS numbers: 04.60.-m, 04.20.Gz, 04.20.-q

Posted at the General Relativity and Quantum Cosmology (gr-qc) electronic archive (www.arXiv.org), as: gr-qc/0507100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raptis, I. Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity. Int J Theor Phys 46, 688–739 (2007). https://doi.org/10.1007/s10773-006-9240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9240-y

Keywords

Navigation