Skip to main content
Log in

General Quantization

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the Darwinian evolution of physical theories, stability (genericity) has survival value. To convert a singular physical theory based on Lie algebras of several levels into a generic quantum theory with the same levels and nearly the same predictions and symmetries in a limited correspondence domain, it suffices to simplify the algebra of each level by a small homotopy (general quantization). This extends and unifies special relativization, general relativization, and canonical quantization. For exercise I general-quantize the scalar meson field in Minkowski space-time. The predictions of the resulting theory are finite, including its zero-point energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P. W. (1972) More is different. Science 177, 393–396.

    Article  ADS  Google Scholar 

  • Atakishiyev, N. M., Pogosyan, G. S., and Wolf, K. B. (2003). Contraction of the finite one-dimensional oscillator. International Journal of Modern Physics A 18, 317.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bacon, F. (1994). Novum Organum (1620). In Urban, P. and Gibson, J. (eds.), Open Court Publishing Company, Peru, Illinois.

    Google Scholar 

  • Baugh, J. (2004) Regular Quantum Dynamics. Ph.D. Thesis, School of Physics, Georgia Institute of Technology.

  • Bergmann, P. G., and Komar, A. (1972). International Journal of Theoretical Physics 5, 15.

    Article  MathSciNet  ADS  Google Scholar 

  • Bergmann, P. G. (1979). The fading world point. Cosmology and Gravitation. Spin, Torsion, Rotation, and Supergravity. In Bergmann, P. G. and de Sabbata, V., eds., Plenum Publishing Co., pp. 173–176.

  • Born, M., Cheng, K. C., and Green, H. S. (1949). Reciprocity theory of electrodynamics. Nature 164, 281–282.

    MATH  Google Scholar 

  • Born, M. (1949). Reciprocity theory of elementary particles. Reviews of Modern Physics 21, 463–473.

    Article  MATH  ADS  Google Scholar 

  • Carlen, E., and Vilela Mendes, R. (2001). Non-commutative space-time and the uncertainty principle. Physics Letters A 290, 109–114. arXiv: quant-ph/0106069.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Connes, A. (1994). Non-commutative geometry. Academic Press, San Diego, CA.

    Google Scholar 

  • Czachor, M., and Wilczewski, M. (2005). Direct test of representation of canonical commutation relations employed in field quantization. quant-ph/0509117.

  • Finkelstein, D. (1961). Space-time code. Physical Review 184, 1261.

    Article  MathSciNet  ADS  Google Scholar 

  • Finkelstein, D. (1972a). Space-time code II. Physical Review D 5, 320.

    Article  ADS  Google Scholar 

  • Finkelstein, D. (1972b). Space-time code III. Physical Review D 5, 2922.

    Article  ADS  Google Scholar 

  • Finkelstein, D. (1974). Space-time code IV. Physical Review D 9, 2219.

    Article  MathSciNet  ADS  Google Scholar 

  • Finkelstein, D., Frye, G., and Susskind, L. (1974). Space-time code V. Physical Review D 9, 2231.

    Article  MathSciNet  ADS  Google Scholar 

  • Finkelstein, D. (1982). Quantum set theory and Clifford algebra. International Journal of Theoretical Physics 21, 489–503.

    MATH  MathSciNet  ADS  Google Scholar 

  • Finkelstein, D. R. (1996). Quantum Relativity. Springer, Heidelberg.

    MATH  Google Scholar 

  • Flato, M. (1982). Deformation view of physical theories. Czechoslovak Journal of Physics B 32, 472–475.

    Article  MathSciNet  Google Scholar 

  • Galiautdinov, A. A., and Finkelstein, D. R. (2002). Chronon corrections to the Dirac equation. Journal of Mathematical Physics 43, 4741.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Geroch, R. (1972). Einstein Algebras. Communications of Mathematical Physics 26, 271–275.

    Article  MathSciNet  ADS  Google Scholar 

  • Gerstenhhaber, M. (1964). Annals of Mathematics 32, 472.

    Google Scholar 

  • Inönü, E., and Wigner, E. P. (1953). Proceedings of the National Academy of Science 39, 510–524.

    Article  MATH  ADS  Google Scholar 

  • Inönü, E. (1964). Group Theoretical Concepts and Methods in Elementary Particle Physics. In Gürsey, F., ed., Gordon & Breach, New York, pp. 391–402.

    Google Scholar 

  • Kim, Y. S., and Wigner, E. P. (1987). Cylindrical group and massless particles. Journal of Mathematical Physics 28, 1175–1179.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kim, Y. S., and Wigner, E. P. (1990). Space-time geometry of relativistic particles. Journal of Mathematical Physics 31, 55–60.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kuzmich, A., Bigelow, N. P., and Mandel, L. (1998). Europhysics Letters A 42, 481.

    Article  ADS  Google Scholar 

  • Kuzmich, A., Mandel, L., Janis, J., Young, Y. E., Ejnisman, R., and Bigelow, N. P. (1999). Physical Review A 60, 2346.

    Article  ADS  Google Scholar 

  • Kuzmich, A., Mandel, L., and Bigelow, N. P. (2000). Physical Review Letters 85, 1594.

    Article  ADS  Google Scholar 

  • Laughlin, R. D., and Pines, D. (2000). The theory of everything. Proceedings of the National Academy of Sciences 97, 28.

    Article  MathSciNet  ADS  Google Scholar 

  • Madore, J. (1992). The fuzzy sphere. Classical and Quantum Gravity 9, 69–87.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Madore, J., and Hitchin, N. J. (1999). An Introduction to Noncommutative Differential Geometry and its Physical Applications, 2nd edition. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Saller, H. (2006). Operational Physics. Springer, Berlin.

    Google Scholar 

  • Segal, I. E. (1951). Duke Mathematics Journal 18, 221–265. Especially pp. 255–256.

    Article  MATH  Google Scholar 

  • Shiri-Grakani, M. (2004). Finite quantum theory of the harmonic oscillator. Ph.D. Thesis, School of Physics, Georgia Institute of Technology.

  • Shiri-Garakani, M., and Finkelstein, D. R. (2003). Finite Quantum Theory of the Harmonic Oscillator. quant-ph/0411203. Based on SHIRI2004.

  • Snyder, H. S. (1947). Physical Review 71, 38–41.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • 'tHooft, G. (2003). Determinism in Free Bosons. International Journal of Theoretical Physics 42, 355.

    Article  MathSciNet  Google Scholar 

  • Vilela Mendes, R. (1994). Journal of Physics A: Mathematical and General 27, 8091–8104.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vilela Mendes, R. (1996). Physics Letters A 210, 232.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vilela Mendes, R. (2000). Journal and Mathematical Physics 41, 156.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vilela Mendes, R. (2005). Some consequences of a noncommutative space-time structure. European Physics Journal C 42, 445–452 hep-th/0406013.

    Article  MathSciNet  ADS  Google Scholar 

  • von Neumann, J. (1931). Die Eindeutigkeit der Schršdingerschen Operatoren. Mathematische Annalen 104, 570–578.

    Article  MATH  MathSciNet  Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmachanik. Springer, Berlin.

    Google Scholar 

  • von Weizsäcker, C. F. (1955). Komplementarität und logik. Naturwissenschaften 42, 521–529, 545–555.

    Article  MathSciNet  Google Scholar 

  • Wilczek, F. (1982). Physical Review Letters 48, 1144.

    Article  MathSciNet  ADS  Google Scholar 

  • Wilson, K. G. (1974) Confinement of quarks. Physical Review D 10, 2445–2459.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ritz Finkelstein.

Additional information

This updates part of a talk given at Glafka 2005, Athens. quant-ph/0601002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, D.R. General Quantization. Int J Theor Phys 45, 1397–1427 (2006). https://doi.org/10.1007/s10773-006-9132-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9132-1

Keywords

Navigation