Skip to main content
Log in

A Survey of Parallel and Distributed Algorithms for the Steiner Tree Problem

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Given a set of input points, the Steiner Tree Problem (STP) is to find a minimum-length tree that connects the input points, where it is possible to add new points to minimize the length of the tree. Solving the STP is of great importance since it is one of the fundamental problems in network design, very large scale integration routing, multicast routing, wire length estimation, computational biology, and many other areas. However, the STP is NP-hard, which shatters any hopes of finding a polynomial-time algorithm to solve the problem exactly. This is why the majority of research has looked at finding efficient heuristic algorithms. Additionally, many authors focused their work on utilizing the ever-increasing computational power and developed many parallel and distributed methods for solving the problem. In this way we are able to obtain better results in less time than ever before. Here, we present a survey of the parallel and distributed methods for solving the STP and discuss some of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du, D.Z., Rubensteiner, J.H., Smith, J.M.: Advances in Steiner trees. In: Combinatorial Optimization, vol. 6. Kluwer Academic Publishers, Dordrecht (2000)

  2. Prömel, H.J., Steger, A.: The Steiner tree problem. Friedrick Vieweg and Son, Germany (2002)

    Book  MATH  Google Scholar 

  3. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: SODA ’00: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and, Applied Mathematics, pp. 770–779 (2000)

  4. Dreyfus, S.E., Wagner, R.A.: The Steiner tree problem in graphs. Networks 1, 195–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Combinatorial Optimization, vol. 11. Kluwer Academic Publishers, Dordrecht (2002)

  6. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1966)

    Article  MathSciNet  Google Scholar 

  8. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berman, P., Ramaiye, V.: Improved approximations for the Steiner tree problem. In: SODA ’92: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and, Applied Mathematics, pp. 325–334 (1992)

  10. Zelikovsky, A.: Better approximation bounds for the network and Euclidean Steiner tree problems. Technical report, University of Virginia, Charlottesville, VA, USA (1996)

  11. Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. Algorithms 36(1), 89–101 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the Steiner tree problem. J. Comb. Optim. 1, 47–65 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: SODA ’99: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and, Applied Mathematics, pp. 448–453 (1999)

  14. Thimm, M.: On the approximability of the Steiner tree problem. Theor. Comput. Sci. 295, 387–402 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Du, D., Hu, X.: Steiner tree problem in computer communication networks. World Scientific, Singapore (2008)

    Book  Google Scholar 

  16. Du, D.Z., Zhang, Y., Feng, Q.: On better heuristic for Euclidean Steiner minimum trees. In: Proceedings 32nd Annual Symposium of Foundations of Computer Science. pp. 431–439 (1991)

  17. Zelikovsky, A.: An 11/8-approximation algorithm for the Steiner problem on networks with rectilinear distance. Coll. Math. Soc. Janos Bolyai 60, 733–745 (1992)

    MathSciNet  Google Scholar 

  18. Martins, S.L., Ribeiro, C.C., Souza, M.C.: A parallel GRASP for the Steiner problem in graphs. In: IRREGULAR ’98: Proceedings of the 5th International Symposium on Solving Irregularly Structured Problems in Parallel, pp. 285–297 (1998)

  19. Resende, M., Pardalos, P., Eksioglu, S.D.: Parallel metaheuristics for combinatorial optimization. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  20. Kruskal Jr, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  21. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  22. Du, D.Z., Hwang, F.K.: A proof of Gilbert and Pollak’s conjecture on the Steiner ratio. Algorithmica 7(2/3), 121–135 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Du, D.Z., Smith, W.D.: Disproofs of generalized Gilbert-Pollak conjecture on the Steiner ratio in three or more dimensions. J. Comb. Theory Ser. A 74, 115–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Innami, N., Kim, B., Mashiko, Y., Shiohama, K.: The Steiner ratio conjecture of Gilbert-Pollak may still be open. Algorithmica 57, 869–872 (2008)

    Google Scholar 

  25. Smith, W.D., Smith, J.M.G.: On the Steiner ratio in 3-space. J. Comb. Theory Ser. A 69(2), 301–332 (1995)

    Article  MATH  Google Scholar 

  26. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30, 104–114 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Herring, M.: The Euclidean Steiner Tree Problem (2004). http://www.denison.edu/academics/departments/mathcs/herring.pdf

  28. Zachariasen, M.: Algorithms for plane Steiner tree problems. Ph. d. University of Copenhagen (1998)

  29. Harris Jr, F.C.: Steiner minimal trees: their computational past, present, and future. J. Comb. Math. Combin. Comput. 30, 195–220 (1998)

    Google Scholar 

  30. Vazirani, V.V.: Approximation algorithms. Springer, Berlin (2001)

    Google Scholar 

  31. Courant, R., Robbins, H.: What is mathematics? Oxford University Press, Oxford (1941)

  32. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  33. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

  34. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. JACM 45(5), 753–782 (1998)

    Article  MATH  Google Scholar 

  35. Ivanov, A.O., Tuzhilin, A.A.: Geometry of minimal networks and the one-dimensional Plateau problem. Russ. Math. Surv. 47(2), 59–131 (1992)

    Article  MathSciNet  Google Scholar 

  36. Nelson, N.M., Michelon, P., Adilson, X.: The Euclidean Steiner tree problem in Rn: a mathematical programming formulation. Ann. Oper. Res. 96(12), 209–220 (2000)

    MathSciNet  Google Scholar 

  37. Smith, W.D.: How to find Steiner minimal trees in Euclideand space. Algorithmica 7, 137–177 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Simchi-Levi, D., Bienstock, D., Goemans, M.X., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Xu, J., Hong, Y., Jing, T., Yang, Y.: Obstacle-avoiding rectilinear minimum-delay Steiner tree construction towards IP-block-based SOC design. In: ISQED ’05: Proceedings of the 6th International Symposium on Quality of Electronic Design, pp. 616–621. IEEE Computer Society (2005)

  40. Akbari, H., Iranmanesh, Z., Ghodsi, M.: Parallel Minimum Spanning Tree Heuristic for the Steiner problem in graphs. In: 2007 International Conference on Parallel and Distributed Systems, pp. 1–8 (2007)

  41. Coulston, C.S.: Constructing exact octagonal Steiner minimal trees. In: GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes Symposium on VLSI, ACM, pp. 1–6 (2003)

  42. Du, D.Z., Wang, L., Xu, B.: The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points. In: COCOON ’01: Proceedings of the 7th Annual International Conference on Computing and Combinatorics, pp. 509–518. Springer, Berlin (2001)

  43. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows and the covering steiner problem. ACM Trans. Algorithms 1(1), 74–101 (2005)

    Article  MathSciNet  Google Scholar 

  44. Salazar, J.J.: A note on the generalized Steiner tree polytope. Discrete Appl. Math. 100(1–2), 137–144 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms 37, 66–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco, CA (1990)

    Google Scholar 

  47. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32, 171–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Dover Publications, New York (1998)

    MATH  Google Scholar 

  49. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and “banyans”. In: STOC ’98: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 540–550. ACM (1998)

  50. Borradaile, G., Klein, P.N., Mathieu, C.: Steiner tree in planar graphs: an O(n log n) approximation scheme with singly-exponential dependence on epsilon. ACM Trans. Algorithms 5(3), 1–31 (2007)

    Article  MathSciNet  Google Scholar 

  51. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. McGraw-Hill Science/Engineering/Math, New York (2001)

    MATH  Google Scholar 

  52. Takahashi, H., Matsuyama, A.: An approximation solution for the Steiner tree problem in graphs. Math. Jpn. 24, 573–577 (1982)

    MathSciNet  Google Scholar 

  53. Bauer, F., Varma, A.: Distributed algorithms for multicast path setup in data networks. IEEE/ACM Trans. Netw. 4(2), 181–191 (1996)

    Article  Google Scholar 

  54. Rayward-Smith, V.J.: The computation of nearly minimal Steiner trees in graphs. Internat. J. Math. Educ. Sci. Technol. 14, 15–23 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Inf. 15, 41–145 (1981)

    Article  MathSciNet  Google Scholar 

  56. Esbensen, H.: Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm. Networks 26, 173–185 (1995)

    Article  MATH  Google Scholar 

  57. Kapsalis, A., Smith, G.D., Rayward-Smith, V.J.: Solving the graphical Steiner tree problem using genetic algorithms. J. Oper. Res. Soc. 26, 173–185 (1993)

    Google Scholar 

  58. Duin, C.W., Voß, S.: Efficient path and vertex exchange in Steiner tree algorithms. Networks 29, 89–105 (1995)

    Article  Google Scholar 

  59. Xu, J., Chiu, S.Y., Glover, F.: Probabilistic tabu search for telecommunications network design. J. Comb. Optim. 1, 69–94 (1996)

    Google Scholar 

  60. Xu, J., Chiu, S., Glover, F.: Using tabu search to solve Steiner tree-star problem in telecommunications network design. Telecommun Syst 6, 117–125 (1996)

    Article  Google Scholar 

  61. Martins, S.L., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Quadratic assignment and related problems. In: DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 16, pp. 237–261. American Mathematical Society (1994)

  62. Dowsland, K.A.: Hill-climbing simulated annealing and the Steiner problem in graphs. Eng. Optim. 17, 91–107 (1991)

    Article  Google Scholar 

  63. Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  64. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  65. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  66. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  67. Rugelj, J., Novak, R., Kandus, G.: Steiner tree based distributed multicast routing in networks, vol. 11. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  68. Oliveira, C., Pardalos, P.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

    Article  MATH  Google Scholar 

  69. Oliveira, C.A.S., Pardalos, P.M.: Mathematical Aspects of Network Routing Optimization, vol. 53. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  70. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Two distributed algorithms for multicasting multimedia information. IEE/ACM Trans. Netw. 1, 286–292 (1993)

    Article  Google Scholar 

  71. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5, 66–77 (1983)

    Article  MATH  Google Scholar 

  72. Novak, R., Rugelj, J.: Distribution of constrained Steiner tree computation in shortest-delay networks. In: MELECON’96, 8th Mediterranean Electrotechnical Conference, vol. 2, pp. 0–3 (1996)

  73. Rugelj, J.: Distributed multicast routing mechanism for global point-to-point networks. In: Proceedings of Twentieth Euromicro Conference, System Architecture and Integration, pp. 389–395 (1994)

  74. Novak, R.: A note on distributed multicast routing in point-to-point networks. Comput. Oper. Res. 28(12), 1149–1164 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  75. Gatani, L., Lo Re, G., Gaglio, S.: An efficient distributed algorithm for generating and updating multicast trees. Parallel Comput. 32(11–12), 777–793 (2006)

    Article  Google Scholar 

  76. Singh, G., Vellanki, K.: A distributed protocol for constructing multicast trees. In: 2nd International Conference On Principles Of Distributed Systems (OPODIS’98), pp. 61–76 (1998)

  77. Kun, Z., Yong, Q., Hong, Z.: Dynamic multicast routing algorithm for delay and delay variation-bounded Steiner tree problem. Knowl Based Syst. 19(7), 554–564 (2006)

    Article  Google Scholar 

  78. Wong, RichardT: A dual ascent approach for steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)

    Article  MATH  Google Scholar 

  79. Santos, M., Drummond, L.M.A., Uchoa, E.: Distributed Dual Ascent Algorithm for Steiner Problems in Networks. Anais do simpósio brasileiro de redes de computadores, pp. 381–394 (2007). http://www.sbrc2007.ufpa.br/Anais-SBRC2007.zip

  80. Drummond, L.M.A., Santos, M., Uchoa, E.: A distributed dual ascent algorithm for Steiner problems in multicast routing. Network 53, 170–183 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  81. Shen, C.C., Li, K., Jaikaeo, C., Sridhara, V.: Ant-based distributed constrained steiner tree algorithm for jointly conserving energy and bounding delay in ad hoc multicast routing. ACM Trans. Auton. Adapt. Syst. 3(1), 1–27 (2008)

    Article  Google Scholar 

  82. Torkestani, J.A., Meybodi, M.R.: Weighted Steiner connected dominating set and its application to multicast routing in wireless MANETs. Wirel. Pers. Commun. 60(2), 145–169 (2010)

    Article  Google Scholar 

  83. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  84. Drummond, L., Uchoa, E., Goncalves, A., Silva, J., Santos, M., Decastro, M.: A grid-enabled distributed branch-and-bound algorithm with application on the Steiner problem in graphs. Parallel Comput. 32(9), 629–642 (2006)

    Article  MathSciNet  Google Scholar 

  85. Kesselman, C., Foster, I.: The grid: blueprint for a new computing infrastructure. Morgan Kaufmann Publishers, Florida (1998)

    Google Scholar 

  86. Uchoa, E.: Algoritmos para problemas de Steiner com aplicaçaõ em projeto de circuitos VLSI. Ph. d. Catholic Universtiy of Rio de Janeiro (2001)

  87. Zhou, H.: Efficient Steiner tree construction based on spanning graphs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(5), 704–710 (2004)

    Article  Google Scholar 

  88. Kahng, A., Robins, G.: A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach. In: IEEE International Conference on Computer-Aided Design. Digest of Technical Papers, pp. 428–431 (1990)

  89. Cinel, S., Bazlamacci, C.F.: A Distributed Heuristic Algorithm for the Rectilinear Steiner Minimal Tree Problem. Comput. Aided Des. 27(11), 2083–2087 (2008)

    Google Scholar 

  90. Winter, P.: An algorithm for the Steiner problem in Euclidean plane. Networks 15, 323–345 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  91. Hewgill, D.E., Cockayne, E.J.: Improved computation of plane Steiner minimal trees. Algorithmica 7, 219–229 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  92. Harris, Jr. F.C.: Parallel computation of steiner minimal trees. In: Proceedings of the 7th SIAM Conference on Parallel Processing for Scientific Computing, pp. 267–272 (2007)

  93. Park, J.S., Ro, W.W., Lee, H., Park, N.: Parallel Algorithms for Steiner Tree Problem. In: 2008 Third International Conference on Convergence and Hybrid Information Technology, pp. 453–455 (2008)

  94. Jayaraman, R., Rutenbar, R.A.: A parallel Steiner heuristic for wirelength estimation of large net populations. In: 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers, pp. 344–347 (1991)

  95. Dunlop, A.E., Kernighan, B.W.: A procedure for placement of standard-cell VLSI circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 4, 92–98 (1985)

    Article  Google Scholar 

  96. McKee, S.A., Barrera, T., Griffith, J., Robins, G., Zhang, T.: Toward a Steiner engine: enhanced serial and parallel implementations of the iterated 1-Steiner MRST algorithm. In: Proceedings of the Third Great Lakes Symposium on VLSI-Design Automation of High Performance VLSI Systems, vol. 2442, pp. 90–94 (1993)

  97. Spoon, S.A.: A Parallel Branch-and-Bound Algorithm for Finding Steiner Minimal Trees (1996)

  98. Pargas, R.P., Ludwick, J., Spoon, S.: Hybrid search algorithms. In: SAC ’97: Proceedings of the 1997 ACM symposium on Applied Computing, pp. 269–273 (1997)

  99. Verhoeven, M.G.A., Severens, M.E.M.: Parallel local search. J. Heuristics 1, 43–65 (1995)

    Article  MATH  Google Scholar 

  100. Voß, S.: Steiner’s problem in graphs: heuristic methods. Discret. Appl. Math. 40, 45–72 (1992)

    Article  MATH  Google Scholar 

  101. Leighton, F.T.: Introduction to parallel algorithms and architectures: array, trees, hypercubes. Morgan Kaufmann Publishers Inc., San Mateo, CA (1992)

    Google Scholar 

  102. Fobel, C., Grewal, G.: A parallel Steiner tree heuristic for macro cell routing. In: IEEE International Conference on Computer Design, vol. 27–33 (2008)

  103. Ludwick, J.: A parallel and genetic approach to the Steiner tree extraction problem. Masters, Clemson University, Clemson, South Carolina (1996)

  104. Bastos, M.P., Ribeiro, C.C.: Reactive tabu search with path-relinking for the Steiner problem in graphs. In: Proceedings of the Third Metaheuristics International Conference, pp. 31–36 (1999)

  105. Ribeiro, C.C., De Souza, M.C.: Tabu search for the Steiner tree problem in graphs. Networks 36, 138–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  106. Martins, S.L., Resende, M.G.C., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP for the Steiner tree problem in graphs using a hybrid local search strategy. J. Global Optim. 17(1), 267–283 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  107. Di Fatta, G., Presti, G.L., Presti, G.L., Re, G.L., Re, G.L.: A parallel genetic algorithm for the steiner problem in networks. In: Proceedings of the 15th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2003) vol. 2, pp. 569–573 (2003)

  108. Presti, G.L., Re, G.L., Storniolo, P., Urso, A.: A grid enabled parallel hybrid genetic algorithm for SPN. In: ICCS: Lecture Notes in Computer Science. Springer, pp. 156–163 (2004)

  109. Muhmmad, R.B.: Parallelization of local search for Euclidean Steiner tree problem. In: Proceedings of the 44th Annual Southeast Regional Conference on - ACM-SE 44, pp. 233–238 (2006)

  110. Zachariasen, M.: Local search for the Steiner tree problem in the Euclidean plane. Eur. J. Oper. Res. 119(2), 282–300 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  111. Handa, Y., Ono, H., Sadakane, K., Yamashita, M.: Neighboorhood composition: a parallelization of local search algorithms. Springer, Berlin (2004)

    Google Scholar 

  112. Totsukawa, H., Senou, H., Ohmura, M.: A parallel genetic algorithm for 3-D rectilinear Steiner tree with bounded number of bends. In: 2008 51st Midwest Symposium on Circuits and Systems, pp. 89–92 (2008)

  113. Huy, N.V., Nghia, N.D.: Solving graphical Steiner tree problem using parallel genetic algorithm. In: IEEE International Conference on Research, Innovation, pp. 29–35 (2008)

  114. Bouchachia, A., Prossegger, M.: A hybrid ensemble approach for the Steiner tree problem in large graphs: a geographical application. Appl. Soft Comput. 11(8), 5745–5754 (2011)

    Article  Google Scholar 

  115. Chamberlain, B.: Graph partitioning algorithms for distributing workloads of parallel computations. Technical report (1998)

  116. Koch, T., Martin, A., Voß, S.: SteinLib: an updated library on Steiner problems in graphs (2000). http://steinlib.zib.de/bibdir/KMV00.bib

  117. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990)

    Google Scholar 

  118. Zhao, J., Chen, C., Ahmadi, M.: Probability-based approach to rectilinear Steiner tree problems. IEEE Trans. VLSI Syst. 10, 836–843 (2002)

    Article  Google Scholar 

  119. Muhmmad, R.B.: Distributed Steiner tree algorithm and its application in ad hoc wireless networks. In: Proceedings of the 2006 International Conference on Wireless Networks (ICWN’06), pp. 173–178 (2006)

  120. Ilyas, M.: The handbook of ad hoc wireless networks. CRC Press, Inc., Boca Raton, FL (2003)

    Google Scholar 

  121. Lin, G.H., Jiang, T., Kearney, P.E.: Phylogenetic k-Root and Steiner k-Root. Lecture notes in computer science, pp. 539–551 (2000)

  122. Lu, C.L., Tang, C.Y., Lee, R.C.T.: The full Steiner tree problem in phylogeny. In: COCOON ’02: Proceedings of the 8th Annual International Conference on Computing and Combinatorics, pp. 107–116. Springer, London (2002)

  123. Fernández-Baca, D.: The perfect phylogeny problem. In: Du, D.Z., Pardalos, P.M. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 203–234. Kluwer Academic Publishers (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitja Bezenšek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezenšek, M., Robič, B. A Survey of Parallel and Distributed Algorithms for the Steiner Tree Problem. Int J Parallel Prog 42, 287–319 (2014). https://doi.org/10.1007/s10766-013-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-013-0243-z

Keywords

Navigation