Skip to main content
Log in

Heat Transfer and Flow Analysis in a Circular Tube Equipped with Triangular Helical Strip Inserts Under Turbulent Flow Conditions for the Application of Boiler

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present study, an experimental investigation was carried out for the Nusselt number, friction factor and thermal performance factor using triangular helical strip inserts. For the experimentation air was considered as flowing fluid medium with Reynolds number ranging from 37 500 to 52 000. For present study helical strip inserts of widths 5 mm, 7.5 mm, and 10 mm were considered and varied with two pitches i.e., single pitch (i.e., w = P) and double pitch (i.e., w = 2P) i.e., 5 mm width strip with 5 mm and 10 mm pitch, 7.5 mm width strip with 7.5 mm and 15 mm pitch, 10 mm width strip with 10 mm and 20 mm pitch. In addition, the experimentation was carried out considering two passes of test section to analyze the thermo-hydraulic characteristics. Experimental results exhibited that heat transfer and thermal performance of the helical inserted tube were expressively improved compared to plain tube. The Nusselt number of helical strip inserts is more for inserts with lower width, tighter pitch for all geometries. Nusselt number ratio was 1.45–2.05 times for single pass and 1.55–2.45 times that of plain tube. The friction factor is lower for inserts with higher pitch. The friction factor is high insert with higher width. The friction factor enhancement ratio is high for strips with more significant number of passes, tighter pitch and more width. The thermo-hydraulic performance of the helical strip insert improves for high number of passes, lower width, lower pitch. Moreover, the thermal enhancement factor (TEF) was in the range of 1.01–2.03 and 1.08–2.41 for single pass and double pass, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

\(f\) :

Friction factor

\(fa\) :

Friction factor of turbulator

\(fo\) :

Friction factor of plain tube

\({f}_{a(thsi)}\) :

Friction factor for triangular helical strip inserts

\(Nu\) :

Nusselt number

\({Nu}_{a}\) :

Nusselt number of turbulator

\({Nu}_{0}\) :

Nusselt number of plain tubes

\({Nu}_{a(thsi)}\) :

Nusselt number for triangular helical strip inserts

OER:

Overall enhancement ratio

P:

Pitch (mm)

1P:

Single Pitch of helical strip insert

2P:

Double Pitch of helical strip insert

t:

Thickness (mm)

w:

Width of helical strip insert (mm)

η:

Thermal enhancement factor (TEF)

Re:

Reynolds number

Q:

Heat transfer (W)

k:

Thermal conductivity (W⋅m−1⋅K−1)

u:

Velocity (m⋅s1)

T:

Temperature (K)

D:

Diameter of pipe (m)

V:

Voltage (v)

I:

Current (A)

ΔP:

Pressure difference (N⋅m2)

h:

Heat transfer coefficient (W⋅m−2⋅K−1)

\(\dot{\mathrm{m}}\) :

Mass flow rate (kg⋅s−1)

μ:

Dynamic viscosity (Pa⋅s)

ρ:

Density (kg⋅m3)

Cp :

Specific heat of air (J⋅kg1⋅K1)

L:

Length of tube (m)

As :

Surface area of tube (m2)

\({W}_{R}\) :

Width ratio

\({P}_{R}\) :

Pitch ratio

References

  1. P. Zainith, N.K. Mishra, Heat Transf. Res. 52, 16 (2021)

    Article  Google Scholar 

  2. A. Painuly, N.K. Mishra, P. Zainith, J. Enhanc, Heat Transf. 29, 1 (2022)

    Google Scholar 

  3. P. Zainith, N.K. Mishra, Int. J. Thermophys. 43, 1–29 (2022)

    Article  ADS  Google Scholar 

  4. P. Zainith, N.K. Mishra, Int. J. Thermophys. 42, 1–21 (2021)

    Article  Google Scholar 

  5. P. Zainith, N.K. Mishra, J. Therm. Sci. Eng. Appl. 13, 5 (2021)

    Article  Google Scholar 

  6. P. Zainith, N.K. Mishra, J. Therm. Sci. Eng. Appl. 14, 8 (2022)

    Article  Google Scholar 

  7. S. Eiamsa-Ard, C. Thianpong, P. Eiamsa-Ard, P. Promvonge, Int. Commun. Heat Mass Transf. 36, 365–371 (2009)

    Article  Google Scholar 

  8. P. Eiamsa-Ard, N. Piriyarungroj, C. Thianpong, S. Eiamsa-Ard, Case Stud Therm. Eng. 3, 86–102 (2014)

    Article  Google Scholar 

  9. J.U.J. Ahamed, M.A. Wazed, S. Ahmed, Y. Nukman, T.M.Y.S. Ya, M.A.R. Sarkar, J. Heat Transf. 133, 4 (2011)

    Article  Google Scholar 

  10. M.M.K. Bhuiya, M.S.U. Chowdhury, M. Saha, M.T. Islam, Int. Commun. Heat Mass Transf. 46, 49–57 (2013)

    Article  Google Scholar 

  11. M.M.K. Bhuiya, A.K. Azad, M.S.U. Chowdhury, M. Saha, Int. Commun. Heat Mass Transf. 74, 18–26 (2016)

    Article  Google Scholar 

  12. M.M.K. Bhuiya, A.S.M. Sayem, M. Islam, M.S.U. Chowdhury, M. Shahabuddin, Int. Commun. Heat Mass Transf. 50, 25–33 (2014)

    Article  Google Scholar 

  13. M.M.K. Bhuiya, M.S.U. Chowdhury, M. Shahabuddin, M. Saha, L.A. Memon, Int. Commun. Heat Mass Transf. 48, 124–132 (2013)

    Article  Google Scholar 

  14. S. Chokphoemphun, M. Pimsarn, C. Thianpong, P. Promvonge, Chin. J. Chem. Eng. 23, 755–762 (2015)

    Article  Google Scholar 

  15. N. Piriyarungrod, S. Eiamsard, C. Thianpong, M. Pimsarn, K.J.C.E. Nanan, Chem. Eng. Proc. 96, 62–71 (2015)

    Article  Google Scholar 

  16. S. Eiamsa-Ard, K. Yongsiri, K. Nanan, C. Thianpong, Chem. Eng. Proc. Process Intensif. 60, 42–48 (2012)

    Article  Google Scholar 

  17. K. Nanan, K. Yongsiri, K. Wongcharee, C. Thianpong, S. Eiamsa-Ard, Int. Commun. Heat Mass Transf. 46, 67–73 (2013)

    Article  Google Scholar 

  18. S. Eiamsa-Ard, K. Nanan, K. Wongcharee, K. Yongsiri, C. Thianpong, Chemi. Eng. Commun. 202, 606–615 (2015)

    Article  Google Scholar 

  19. M.M.K. Bhuiya, M.S.U. Chowdhury, J.U. Ahamed, M.J.H. Khan, M.A.R. Sarkar, M.A. Kalam, M. Shahabuddin, Int. Commun. Heat Mass Transf. 39, 818–825 (2012)

    Article  Google Scholar 

  20. M.M.K. Bhuiya, J.U. Ahamed, M.S.U. Chowdhury, M.A.R. Sarkar, B. Salam, R. Saidur, M.A. Kalam, Int. Commun. Heat Mass Transf. 39, 94–101 (2012)

    Article  Google Scholar 

  21. S. Eiamsa-ard, P. Promvonge, Sol. Energy 78, 483–494 (2005)

    Article  ADS  Google Scholar 

  22. A. Kumar, S. Singh, S. Chamoli, M. Kumar, Heat Transf. Eng. 40, 616–626 (2019)

    Article  ADS  Google Scholar 

  23. M.K. Abdolbaqi, W.H. Azmi, R. Mamat, N.M.Z.N. Mohamed, G. Najafi, Int. Commun. Heat Mass Transf. 75, 295–302 (2016)

    Article  Google Scholar 

  24. S. Eiamsa-Ard, P. Seemawute, K. Wongcharee, Exp. Therm. Fluid Sci. 34, 711–719 (2010)

    Article  Google Scholar 

  25. S. Eiamsa-ard, P. Seemawute, K. Wongcharee, Int. Heat Transf. Conf. 49378, 547–553 (2010)

    Google Scholar 

  26. P. Murugesan, K. Mayilsamy, S. Suresh, Exp. Heat Transf. 25, 30–47 (2012)

    Article  ADS  Google Scholar 

  27. K. Wongcharee, S. Eiamsa-Ard, Int. Commun. Heat Mass Transf. 38, 348–352 (2011)

    Article  Google Scholar 

  28. S. Ponnada, T. Subrahmanyam, S.V. Naidu, Int. J. Therm. Sci. 136, 530–538 (2019)

    Article  Google Scholar 

  29. P. Promvonge, Energy Convers. Manage. 49, 980–987 (2008)

    Article  Google Scholar 

  30. S. Gunes, V. Ozceyhan, O. Buyukalaca, Exp. Therm. Fluid Sci. 34, 684–691 (2010)

    Article  Google Scholar 

  31. O. Keklikcioglu, V. Ozceyhan, Appl. Therm. Eng. 131, 686–695 (2018)

    Article  Google Scholar 

  32. D. Khurana, S. Subudhi, J. Therm. Sci. Eng. (2022). https://doi.org/10.1115/1.4052016

    Article  Google Scholar 

  33. O. Keklikcioglu, V. Ozceyhan, Int. Commun. Heat Mass Transf. 78, 88–94 (2016)

    Article  Google Scholar 

  34. Y. Hong, J. Du, S. Wang, W.B. Ye, S.M. Huang, Int. J. Heat Mass Transf. 130, 483–495 (2019)

    Article  Google Scholar 

  35. S. Eiamsa-Ard, P. Nivesrangsan, S. Chokphoemphun, P. Promvonge, Int. Commun. Heat Mass Transf. 37, 850–856 (2010)

    Article  Google Scholar 

  36. P. Promvonge, Energy Convers. Manag. 49, 2949–2955 (2008)

    Article  Google Scholar 

  37. B. Ranjbar, M. Rahimi, F. Mohammadi, Int. J. Thermophys. 42, 1–19 (2021)

    Article  Google Scholar 

  38. S. Eiamsa-ard, K. Kiatkittipong, Int. J. Thermophys. 40, 1–14 (2019)

    Article  Google Scholar 

  39. A.B. Yakovlev, S.E. Tarasevich, A.A. Giniyatullin, A.V. Shishkin, J. Enhanc, Heat Transf. 20, 6 (2013)

    Google Scholar 

  40. L. Li, X. Du, L. Yang, Y. Yang, G. Wei, J. Enhanc, Heat Transf. 23, 6 (2016)

    Google Scholar 

  41. D. Neshumayev, A. Ots, J. Laid, T. Tiikma, Exp. Therm. Fluid Sci. 28, 877–886 (2004)

    Article  Google Scholar 

  42. H. Karakaya, A. Durmus, Int. J. Heat Mass Transf. 60, 756–762 (2013)

    Article  Google Scholar 

  43. B. Sungur, B. Topaloglu, Renew. Energy 143, 121–129 (2019)

    Article  Google Scholar 

  44. F.W. Dittus, L.M.K. Boelter, Int. Commun. Heat Mass Transf. 12, 3–22 (1985)

    Article  Google Scholar 

  45. V. Gnielinski, NASA STI/recon technical report A 41, 8–16 (1975)

    Google Scholar 

  46. B.S. Petukhov, Adv. Heat Transf. 6, 503–564 (1970)

    Article  Google Scholar 

  47. R.J. Moffat, Exp. Therm. Fluid Sci. 1, 3–17 (1988)

    Article  ADS  Google Scholar 

  48. G.K. Poongavanam, V. Ramalingam, Int. J. Heat Mass Transf. 139, 1–14 (2019)

    Article  Google Scholar 

  49. S. Eiamsa-ard, C. Thianpong, P. Promvonge, Int. Commun. Heat Mass Transf. 33, 1225–1233 (2006)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TA: execution of experiments and preparation of the draft of the manuscript. PZ: execution of experiments, revision of the draft. NKM: revision of the draft manuscript, rectification, editing, and supervision. AS: revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Niraj Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adgale, T., Zainith, P., Mishra, N.K. et al. Heat Transfer and Flow Analysis in a Circular Tube Equipped with Triangular Helical Strip Inserts Under Turbulent Flow Conditions for the Application of Boiler. Int J Thermophys 44, 1 (2023). https://doi.org/10.1007/s10765-022-03112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03112-y

Keywords

Navigation