Skip to main content
Log in

Unusual Phase Behavior of Hydrocarbon Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The phase behavior of quaternary mixtures of methane, propane, octane, and decane for the low concentration of heavy hydrocarbons (octane and decane) are qualitatively transformed compared to the customary concept. Each mixture splits into three phases, a macroscopic phase enriched by methane and propane and two microscopic phases enriched by octane or decane. Each microphase consists of one heavy component. The microphase phase behavior depends on the composition of the macrophase. If octane dissolves in the macrophase the line of formation of the decane-rich microphase shifts to the lower temperature. The heavy hydrocarbons provoke a split of the liquid part of the macrophase into two liquid phases. All phases are equilibrium phases. Based on the quasi-binary approximation the hydrocarbon mixtures for the low concentration of heavy components are prepared. The first quasi-component is a binary mixture with the constant methane/propane ratio. The second quasi-component is octane and decane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

P :

Pressure [MPa]

T :

Temperature [K]

U :

Internal energy [J]

Ω/V = − P :

Density of grand potential [MPa]

C V = (∂U/∂T)V :

Heat capacity at constant volume [kJ·kg1·K1]

( P/∂T)V :

Temperature derivative of pressure at constant volume (the thermal pressure coefficient) [MPa·K1]

(∂P/∂T)σ :

Temperature derivative of pressure along the equilibrium curve [MPa·K1]

x :

Concentration [mole fraction]

m :

Mass [kg]

ρ :

Density [kg·m3]

V:

Vapor phase

L:

Methane-propane liquid phase

L′:

Methane-propane-octane liquid phase

L1 :

Octane-, decane-lean liquid phase

L2 :

Octane-, decane-rich liquid phase

S1 :

Microphase enriched by octane

S2 :

Microphase enriched by decane

References

  1. S.M. Walas, Phase Equilibria in Chemical Engineering (Butterworth Publishers, Department of Chemical and Petroleum Engineering, University of Kansas and the C.W. Nofsinger Company)

  2. V.M. Buleiko, D.V. Buleiko, Phase behavior of hydrocarbon mixtures for low concentration of heavy hydrocarbon components. Int. J. Thermophys. 41, 27 (2020). https://doi.org/10.1007/s10765-020-2602-5

    Article  ADS  Google Scholar 

  3. V.M. Buleiko, D.V. Buleiko, Phase diagrams for ternary mixtures of methane, propane, and octane for the low concentration of octane. Int. J. Thermophys. 42, 85 (2021). https://doi.org/10.1007/s10765-021-02835-8

    Article  ADS  Google Scholar 

  4. P.H. van Konynenburg, R.L. Scott, Critical lines and phase equilibria in binary Van der Waals mixtures. Philos. Trans. 298A(1442), 445 (1980)

    ADS  Google Scholar 

  5. P.I. Freeman, J.S. Rowlinson, Lower critical solution points in hydrocarbon mixtures. Pure Appl. Chem. (1961). https://doi.org/10.1351/pac196102010329

    Article  Google Scholar 

  6. J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures. (Butterworth & Co (Publishers) Ltd, 1982)

  7. A.J. Davenport, J.S. Rowlinson, Trans. Faraday Soc. 59, 78 (1963)

    Article  Google Scholar 

  8. K.S. Pedersen, A. Fredenslund, P. Thomassen, Properties of oils and gases Contributions in Petroleum Geology and Engineering (Gulf Publishing Company, Houston, 1989)

    Google Scholar 

  9. A.B. Rodrigues, J.P. Kohn, J. Chem, Eng. Data 12, 191 (1967)

    Article  Google Scholar 

  10. J.R. Wagner, D.S. McCaffrey, J.P. Kohn, J. Chem. Eng. Data 13, 22 (1968)

    Article  Google Scholar 

  11. J. P. Kohn, Y.J. Kim, and Y. C. Pan, J. Chem, Engng Data 33 (1966)

  12. E.A. Guggenheim, Mixtures. The Theory of the Equilibrium Properties of some Simple Classes of Mixtures, Solutions and Alloys. (Oxford University Press, Amen Hous, London E.C.4, 1952)

  13. V.M. Buleiko, B.A. Grigoriev, V.A. Istomin, Vestnik of Kazan Technological University. 17(23), 101 (2014) [in Russian]

  14. J.D. Hottovy, J.P. Kohn, K.D. Luks, Partial miscibility behavior of the Methane – Ethane – n-Octane System. J. Chem. Eng. Data 26, 135–137 (1981)

    Article  Google Scholar 

  15. J.D. Hottovy, J.P. Kohn, K.D. Luks, Partial miscibility behavior of the ternary systems methane + propane + n-octane, methane + n-butane + n-octane, and methane + carbon dioxide + n-octane. J. Chem. Eng. Data 27, 298–302 (1982)

    Article  Google Scholar 

  16. Kohn, J. P.; Luks, K. D. Liquid-Liquid-Vapor Equilibria in Cryogenic LNG Mixtures Gas Processors association Research Report, 1981, No. RR-49

  17. Kohn, J. P., Luks, K. D. Solubility of Hydrocarbons in Cryogenic LNG and NGL Mixtures GPA, 1977, Research Report No. 27

  18. B. Lagourette, J.L. Daridon, J.F. Gaubert, H. Saint-Guirons, High-pressure ultrasonic speeds in a ternary condensate gas: {0.880CH4 + 0. 100C3H8 + 0.020CH3(CH2)6CH3}(g), J. Chem. Thermodyn. 27, 259–266 (1995)

  19. Z.M. Ramazanova, Phase equilibrium for the ternary system methane + propane + n-octane Izv. Vyssh. Uchebn. Zaved. Neft Gaz 7, 77–81 (1964)

    Google Scholar 

  20. H.C. Wiese, H.H. Reamer, B.H. Sage, Phase equilibria in hydrocarbon systems. Phase behavior in the methane-propane-n-decane system. J. Chem. Eng. Data 15, 75–82 (1970)

    Article  Google Scholar 

  21. K.T. Koonce, R. Kobayashi, Vapor-liquid equilibrium coefficients determined by gas - liquid partition chromatography the systems methane - propane - n-decane and methane - propane - n-heptane. J. Chem. Eng. Data 9, 494–501 (1964)

    Article  Google Scholar 

  22. K.T. Koonce, R. Kobayashi, A method for determining the solubility of gases in relatively nonvolatile liquids. Solubility of methane in n-decane. J. Chem. Eng. Data 9, 490–494 (1964)

    Article  Google Scholar 

  23. A. Tarek, Equations of State and PVT Analysis, 2nd edn. (Gulf Professional Publishing, Elsevier, 2016)

    Google Scholar 

  24. V.M. Buleiko, B.A. Grigoriev, V.A. Istomin, Fluid Phase Equilib. 441, 64 (2017)

    Article  Google Scholar 

  25. V.M. Buleiko, B.A. Grigoriev, J. Mendoza, Fluid Phase Equilib. 462, 14 (2018)

    Article  Google Scholar 

  26. V.M. Buleiko, Laws governing the phase transformations of hydrocarbon mixtures in the oil and gas reservoirs of the developed deposits (based on the experimental data), Thesis of the scientific degree of Doctor of Technical Science. (Russian Academy of Science, 2007) [in Russian]

  27. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971)

    Google Scholar 

  28. A.V. Voronel, Thermal Measuremts and Critical Phenomena in Liquids, 12th School of Modern Physics on Phase Transitions and Critical Phenomena (Tel Aviv University, 343, 1976)

  29. M.A. Anisimov, A.V. Voronel, T.M. Ovodova, An experimental Investigation of the Singularity of Specific Heat at the Critical Stratification point of a Binary mixture. Sov. Phys. 34, 583 (1972)

    ADS  Google Scholar 

  30. M. Hempel, O. Heinimann, A. Yudin, I. Iosilevskiy, M. Liebendoerfer, F.-K. Thielemann, Phys. Rev. D 94, 103001 (2016)

    Article  ADS  Google Scholar 

  31. V. Gryaznov, I. Iosilevskiy, J. Phys. A 42, 214007 (2009)

    Article  ADS  Google Scholar 

  32. I. Iosilevskiy, Non-Ideality and Phase Transitions in Coulomb Systems, Lambert (Academic Publishing, Germany, 2011)

    Google Scholar 

  33. I. Iosilevskiy, Entropic phase transitions and accompanying thermodynamics of matter. J. Phys. 653, 012077 (2015)

    Google Scholar 

  34. D. Frenkel, The simulation of entropic phase transitions. J. Phys. 6, 71 (1994)

    Google Scholar 

  35. A.I. Kitaigorodsky, Molecular Crystals and Molecules (Physical Chemistry, Polytechnic Institute of Brooklyn, 29, 1973)

  36. A.R. Ubbelohde, Melting and Crystal Structure (Clarendon Press, Oxford, 1965)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Russian Foundation for Fundamental Research under Grants № 19-08-00202.

Funding

Funding was provided by Российский Фонд Фундаментальных Исследований (РФФИ) (Grant Number 19-08-00202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Buleiko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buleiko, V.M., Buleiko, D.V. Unusual Phase Behavior of Hydrocarbon Mixtures. Int J Thermophys 43, 60 (2022). https://doi.org/10.1007/s10765-022-02988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02988-0

Keywords

Navigation