Skip to main content
Log in

Experimental Investigation of Pool Boiling Characteristics on Microstructured Surface in the Presence of MW-CNT with Hybrid-Base Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study investigates the effect of microstructured surface of brass and its morphology change due to the deposition of nanofluids in pool boiling process on heat transfer characteristics with pure deionized water and water-ethylene glycol at different volumetric concentrations. In addition, nanofluids are made of OH-based multiwall carbon nanotubes with base fluids listed in two volumetric percentages of 0.025 % and 0.1 %. On the microstructured surface, with increasing ethylene glycol concentration, the critical heat flux and heat transfer coefficient decreased, and the highest increase was related to deionized water boiling. On the microstructured surface in the presence of nanofluids with hybrid base fluids, the critical heat flux and heat transfer coefficient increased with increasing nanofluid concentration, and the highest increase was related to deionized water base nanofluid boiling at volumetric concentration of 0.1 %, which was 74.9 % and 91.8 %, respectively, compared to the boiling of deionized water on the microstructured surface. On the deposited microstructured surface by nanoparticles, the highest changes critical heat flux and heat transfer coefficient was related to deionized water base nanofluid boiling at volumetric concentration of 0.1 %, which was increased 18.98 % and decreased 48.6 %, respectively, compared to the boiling of deionized water on the microstructured surface without deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Poly tetra fluoro ethylene.

Abbreviations

h:

Boiling heat transfer coefficient (W⋅m2⋅K1)

cp :

Heat capacity at constant pressure (kJ⋅kg1⋅K1)

m:

Mass (kg)

K:

Thermal conduction coefficient (W⋅m1 K1)

hfg :

Saturated enthalpy (kJ⋅kg1)

C:

Constant coefficient

q″:

Heat flux (W⋅m2)

T:

Temperature (K)

U:

Uncertainty

Z:

Thermocouples location in cartridge (mm)

Nu:

Nusselt number

Pr:

Prandtl number

Pe:

Peclet number

E:

Constant coefficient proportional to material of boiling surface and type of solution

y* :

The mass fraction of the lighter component in equilibrium with the liquid phase

x:

The mass fraction of the lighter component

D:

Mass propagation capability

n:

Constant coefficient

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (Pa.s)

α :

Thermal diffusivity

φ :

Volumetric percentage of nanoparticles

σ :

Surface tension (N/m)

p:

Particle

np:

Nanoparticle

nf:

Nanofluid

sf:

Solid–fluid

S:

Boiling surface

sat:

Saturation

sat-w:

Saturation properties of water

g:

Gas

f:

Liquid

References

  1. G. Liang, I. Mudawar, Review of pool boiling enhancement with additives and nanofluids. Int. J. Heat Mass Transf 124, 423–453 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.046

    Article  Google Scholar 

  2. G. Liang, I. Mudawar, Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int. J. Heat Mass Transfer 136, 324–354 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086

    Article  Google Scholar 

  3. J.D. Patil, B.S. Gawali, Experimental study of heat transfer characteristics in oscillating fluid flow in tube. Exp. Heat Transf. 30(4), 328–340 (2017)

    Article  ADS  Google Scholar 

  4. A. Zou, Fundamentals of microlayer evaporation and its role on boiling heat transfer enhancement, Dissertations - ALL. 417 (2015). https://surface.syr.edu/etd/417

  5. S. Arman Ghaffarizadeh, S.H. Zandavi, C.A. Ward, Specific surface area from nitrogen adsorption data at 77 K using the zeta adsorption isotherm. J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.7b08642

    Article  Google Scholar 

  6. I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. Int. J. Heat Mass Transf. 47, 5033–5044 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019

    Article  MATH  Google Scholar 

  7. K.C. Leong, J.Y. Ho, K.K. Wong, A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces. Appl. Therm. Eng. 112, 999–1019 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.138

    Article  Google Scholar 

  8. C.S. Sujith Kumar, G. Udaya Kumar, M.R. Mata Arenales, C.-C. Hsu, S. Suresh, P.-H. Chen, Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings. Appl. Therm. Eng. 137, 868–891 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.092

    Article  Google Scholar 

  9. M.M. Sarafraz, T. Kiani, F. Hormozi, Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int. Commun. Heat Mass Transf. 70, 75–83 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2015.12.008

    Article  Google Scholar 

  10. R. Kamatchi, S. Venkatachalapathy, C. Nithya, Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids. Heat Mass Transf. 52, 2357–2366 (2016). https://doi.org/10.1007/s00231-015-1749-2

    Article  ADS  Google Scholar 

  11. M.M. Sarafraz, F. Hormozi, Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int. J. Therm. Sci. 100, 255–266 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.10.006

    Article  Google Scholar 

  12. D. Ciloglu, An Experimental Investigation of Nucleate Pool Boiling Heat transfer of Nanofluids From a Hemispherical Surface. Heat Transf. Eng. 38, 919–930 (2017). https://doi.org/10.1080/01457632.2016.1212571

    Article  ADS  Google Scholar 

  13. Y. Wang, K. Deng, J. Wu, G. Su, S. Qiu, The characteristics and correlation of nanofluid flow boiling critical heat flux. Int.J.Heat Mass Transf. 122, 212–221 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.118

    Article  Google Scholar 

  14. N. Kumar, N. Urkude, S.S. Sonawane, S.H. Sonawane, Experimental study on pool boiling and critical heat flux enhancement of metal oxides based nanofluid. Energy 84, 219–238 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.05.018

    Article  Google Scholar 

  15. Saeed Zeinali Heris, Experimental investigation of pool boiling characteristics of low-concentrated CuO/ ethylene glycol–water nanofluids. Int. Commun. Heat Mass Transfer 38, 1470–1473 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.08.004

    Article  Google Scholar 

  16. M.R. Raveshi, A. Keshavarz, M.S. Mojarrad, S. Amiri, Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp. Therm. Fluid Sci 44, 805–814 (2013). https://doi.org/10.1016/j.expthermflusci.2012.09.025

    Article  Google Scholar 

  17. Y. He, H. Li, Y. Hu, X. Wang, J. Zhu, Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel. Int. J. Heat and Mass Transf. 98, 611–615 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.052

    Article  Google Scholar 

  18. W. Chamsaard, S. Brundavanam, C.C. Fung, D. Fawcett, G. Poinern, Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials (2017). https://doi.org/10.3390/nano7060131

    Article  Google Scholar 

  19. F.E. Berger Bioucas, M.H. Rausch, J. Schmidt, A. Bück, T.M. Koller, A.P. Fröba, Effective thermal conductivity of nanofluids: measurement and prediction. Int.J.Thermophys. (2020). https://doi.org/10.1007/s10765-020-2621-2

    Article  Google Scholar 

  20. S. Mukherjee, S.R. Panda, P.C. Mishra, P. Chaudhuri, Enhancing thermophysical characteristics and heat transfer potential of TiO2/water nanofluid. Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02745-1

    Article  Google Scholar 

  21. S.H. Golkar, M. Khayat, M. Zareh, Nucleate and film boiling performance of ethanol-based nanofluids on horizontal flat plate: an experimental investigation. Int. J. Thermophys. 42(55), 1–28 (2021)

    Google Scholar 

  22. D. Vasudevan, D. Senthilkumar, S. Surendhiran, Performance and characterization studies of reduced graphene oxides aqua nanofluids for a pool boiling surface. Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02651-6

    Article  Google Scholar 

  23. S. Gupta, R. Misra, Development of micro/nanostructured-Cu-TiO2-nanocomposite surfaces to improve pool boiling heat transfer performance. Heat Mass Transf. 56, 2529–2544 (2020). https://doi.org/10.1007/s00231-020-02878-x

    Article  ADS  Google Scholar 

  24. A. Rainho Neto, J.L.G. Oliveira, J.C. Passos, Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs. Appl. Therm. Eng. 111, 1493–1506 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.130

    Article  Google Scholar 

  25. I.S. Kiyomura, L.L. Manetti, A.P. da Cunha, G. Ribatski, E.M. Cardoso, An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int. J. Heat Mass Transf. 52, 459–468 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.051

    Article  Google Scholar 

  26. S. Deb, S. Pal, D.C. Das, M. Das, A.K. Das, R. Das, Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat Mass Transf. 56(12), 3273–87 (2020)

    Article  ADS  Google Scholar 

  27. A. Jaikumar, S.G. Kandlikar, Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. Int. J. Heat Mass Transfer 95, 795–805 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.061

    Article  Google Scholar 

  28. A. Walunj, A. Sathyabhama, Comparative study of pool boiling heat transfer from various microchannel geometries. Appl. Therm. Eng. 128, 672–683 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.157

    Article  Google Scholar 

  29. C.S. Sujith Kumar, Y.W. Chang, M.R. Arenales, L.S. Kuo, Y.H. Chuang, P.H. Chen, Experimental investigation on the effect of size and pitch of hydrophobic square patterns on the pool boiling heat transfer performance of cylindrical copper surface. Inventions 12, 241–256 (2018)

    Google Scholar 

  30. J. Zhou, B. Liu, B. Qi, J. Wei, H. Mao, Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces. Int. J. Therm. Sci. 135, 133–147 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.09.013

    Article  Google Scholar 

  31. R.K. Gouda, M. Pathak, M.K. Khan, Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. Int. J. Heat Mass Transf. 127, 39–50 (2018)

    Article  Google Scholar 

  32. H.S. Kim, W.I. Park, M. Kang, H.J. Jin, Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J. Phys. Chem. Solids 69, 1209–1212 (2008). https://doi.org/10.1016/j.jpcs.2007.10.062

    Article  ADS  Google Scholar 

  33. S. Chakraborty, I. Sengupta, I. Sarkar, S.K. Pal, S. Chakraborty, Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu- Zn-Al LDH nanofluid. Appl. Clay Sci. 168, 43–55 (2019). https://doi.org/10.1016/j.clay.2018.10.018

    Article  Google Scholar 

  34. J.R. Taylor, An Introduction to Error Analysis (University Science Books, Sausalito, 1997)

    Google Scholar 

  35. N. Zuber, M. Tribus, J.W. Westwater, The hydrodynamic crisis in pool boiling of saturated and subcooled liquids, in: International Developments in Heat Transfer: Proceedings of the Int. Heat Transfer Conference, Boulder, USA, pp. 230–236 (1961)

  36. I. Pioro, Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosyphon, Preprints of the 10th International Heat Pipe Conference, Stuttgart, Germany, September, Paper H1–5 (1997)

  37. Rohsenow, A Method of Correlating Heat Transfer Data for Surface Boiling Liquids, W. M., Trans. ASME, Vol.74 (1952) http://hdl.handle.net/1721.1/61431

  38. I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. II: assessment of prediction methods. Int. J. Heat Mass Transf. 47, 5045–5057 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.020

    Article  MATH  Google Scholar 

  39. G. Ribastky, J.M. Saiz Jabardo, Experimental study of nucleate boiling of refrigerants on cylindrical surfaces. Int. J. Heat Mass Transf. 46, 4439–4451 (2003). https://doi.org/10.1016/S0017-9310(03)00252-7

    Article  Google Scholar 

  40. F. Taboas, R. Gorenflo, Pool boiling of ammonia/water and its pure component comparison data in literature with predictions of standard correlation. Int. J. Refrig 30, 778–788 (2007). https://doi.org/10.1016/j.ijrefrig.2006.12.009

    Article  Google Scholar 

  41. W.F. Calus, P. Rice, Pool boiling-binary liquid mixtures. Chem. Eng. Sci. 27, 1687–1697 (1972). https://doi.org/10.1016/0009-2509(72)80083-6

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khayat.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallali, A., Khayat, M. & Bahadori, N. Experimental Investigation of Pool Boiling Characteristics on Microstructured Surface in the Presence of MW-CNT with Hybrid-Base Nanofluids. Int J Thermophys 42, 162 (2021). https://doi.org/10.1007/s10765-021-02910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02910-0

Keywords

Navigation