Skip to main content
Log in

Toughening Mechanism of Thermal Barrier Coatings

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal barrier coatings are applied to the protection of metal components in aircraft thrusters, power generation and ship gas turbine engines, which can make the gas turbine run for a long time in a high-temperature environment. The fracture toughness of the coating characterizes the ability of the material to prevent crack propagation and is one of the most important factors to be taken into consideration to prolong the life of the thermal barrier coating. The current research is mainly through dispersion toughening, the phase transformation toughening, whisker toughening, ferroelastic toughening, and other methods to improve the fracture toughness of ceramic coatings. In this paper, the use of different toughening mechanisms and the addition of unique materials to improve the fracture toughness of thermal barrier coatings are introduced, and the future research direction is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Jana, P.S. Jayan, S. Mandal, K. Biswas, Surf. Coat. Technol. 322, 108 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.038

    Article  Google Scholar 

  2. P. Jana, P.S. Jayan, S. Mandal, K. Biswas, Surf. Coat. Technol. 328, 398 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.019

    Article  Google Scholar 

  3. J. Zeng, J. Sun, H. Zhang, X. Yang, F. Qiu, P. Zhou, W. Niu, S. Dong, X. Zhou, X. Cao, Ceram. Int. 44(10), 11472 (2018). https://doi.org/10.1016/j.ceramint.2018.03.209

    Article  Google Scholar 

  4. S. Tsukada, S. Kuroda, M. Nishijima, H. Araki, A. Yumoto, M. Watanabe, Surf. Coat. Technol. 363, 95 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.097

    Article  Google Scholar 

  5. J.S. Jinyaneng, P. Liang, X. Yang, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.03.048

    Article  Google Scholar 

  6. J.T.S. Ahmaniemi, M. Vippola, P. Vuoristo, T. Mäntylä, F. Cernuschi, C. Gualco, A. Bonadei, R.D. Magg, J. Therm. Spray Technol. (2003). https://doi.org/10.1361/10599630420371

    Article  Google Scholar 

  7. N.P. Padture, M. Gell, E.H. Jordan, Science 296(5566), 280 (2002). https://doi.org/10.1126/science.1068609

    Article  ADS  Google Scholar 

  8. L. Yang, Q.X. Liu, Y.C. Zhou, W.G. Mao, C. Lu, J. Mater. Sci. Technol. 30(4), 371 (2014). https://doi.org/10.1016/j.jmst.2013.11.005

    Article  Google Scholar 

  9. M. Bahamirian, S.M.M. Hadavi, M. Farvizi, M.R. Rahimipour, A. Keyvani, Surf. Coat. Technol. 360, 1 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.113

    Article  Google Scholar 

  10. G.-J. Yang, L. Chen, J. Therm. Spray Technol. (2018). https://doi.org/10.1007/s11666-018-0692-4

    Article  Google Scholar 

  11. H. Zhao, F. Yu, T.D. Bennett, H.N.G. Wadley, Acta Mater. 54(19), 5195 (2006). https://doi.org/10.1016/j.actamat.2006.06.028

    Article  ADS  Google Scholar 

  12. G.-J. Yang, L. Chen, J. Adv. Ceram. (2018). https://doi.org/10.1007/s40145-017-0252-2

    Article  Google Scholar 

  13. C.P. Grigoropoulos, Int. J. Extrem. Manuf. (2019). https://doi.org/10.1088/2631-7990/ab0eca

    Article  Google Scholar 

  14. P.G. Lashmi, P.V. Ananthapadmanabhan, G. Unnikrishnan, S.T. Aruna, J. Eur. Ceram. Soc. 40(8), 2731 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.016

    Article  Google Scholar 

  15. R. Darolia, Int. Mater. Rev. 58(6), 315 (2013). https://doi.org/10.1179/1743280413y.0000000019

    Article  Google Scholar 

  16. J. Yuan, J. Sun, J. Wang, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, J. Alloys Compd. 740, 519 (2018). https://doi.org/10.1016/j.jallcom.2018.01.021

    Article  Google Scholar 

  17. B.S.S. Daniel, V.S.R. Murty, G.S. Murty, J. Mater. Process. Technol. 68(2), 132–155 (1997). https://doi.org/10.1016/S0924-0136(96)00020-9

  18. R.A. Miller, Surf. Coat. Technol. 30, 1 (1987)

    Article  Google Scholar 

  19. W. Ma, D. Mack, J. Malzbender, R. Vaßen, D. Stöver, J. Eur. Ceram. Soc. 28(16), 3071 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.05.013

    Article  Google Scholar 

  20. J. Yu, H. Zhao, S. Tao, X. Zhou, C. Ding, J. Eur. Ceram. Soc. 30(3), 799 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.010

    Article  Google Scholar 

  21. R. Belli, M. Wendler, J.I. Zorzin, U. Lohbauer, Dent. Mater. 34(1), 97 (2018). https://doi.org/10.1016/j.dental.2017.11.016

    Article  Google Scholar 

  22. G. Mehboob, M.-J. Liu, T. Xu, S. Hussain, G. Mehboob, A. Tahir, Ceram. Int. 46(7), 8497 (2020). https://doi.org/10.1016/j.ceramint.2019.12.200

    Article  Google Scholar 

  23. S. Wu, Z. Xue, X. Ji, E. Byon, S. Zhang, J. Alloys Compd. 842, (2020). https://doi.org/10.1016/j.jallcom.2020.155872

  24. A.G. Evans, D.R. Clarke, C.G. Levi, J. Eur. Ceram. Soc. 28(7), 1405 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.023

    Article  Google Scholar 

  25. X. Chen, M.Y. He, I. Spitsberg, N.A. Fleck, J.W. Hutchinson, A.G. Evans, Wear 256(7–8), 735 (2004). https://doi.org/10.1016/s0043-1648(03)00446-0

    Article  Google Scholar 

  26. K. Sugioka, Int. J. Extrem. Manuf. (2019). https://doi.org/10.1088/2631-7990/ab0eda

    Article  Google Scholar 

  27. K. Sugioka, D. Zhang, B. Ranjan, T. Tanaka, Int. J. Extrem. Manuf. (2020). https://doi.org/10.1088/2631-7990/ab729f

    Article  Google Scholar 

  28. W. Li, P.K. Liaw, Y. Gao, Intermetallics 99, 69 (2018). https://doi.org/10.1016/j.intermet.2018.05.013

    Article  Google Scholar 

  29. J.Y. Li, H. Dai, X.H. Zhong, Y.F. Zhang, X.F. Ma, J. Meng, X.Q. Cao, J. Alloys Compd. 452(2), 406 (2008). https://doi.org/10.1016/j.jallcom.2006.11.025

    Article  Google Scholar 

  30. I. Ahmad, M. Islam, H.S. Abdo, T. Subhani, K.A. Khalil, A.A. Almajid, B. Yazdani, Y. Zhu, Mater. Des. 88, 1234 (2015). https://doi.org/10.1016/j.matdes.2015.09.125

    Article  Google Scholar 

  31. N. Nagaraju, A. Raja Annamalai, Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab1603

    Article  Google Scholar 

  32. T. Haoliang, W. Changliang, G. Mengqiu, G. Junguo, C. Yongjing, W. Fuyuan, L. Erbao, J. Guo, Ceram. Int. 46(4), 4444 (2020). https://doi.org/10.1016/j.ceramint.2019.10.170

    Article  Google Scholar 

  33. J. Feng, B. Xiao, R. Zhou, W. Pan, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4722174

    Article  Google Scholar 

  34. L. Guo, C.W. Yu ZZhang, X. Zhao, F. Ye, Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2015.05.056

    Article  Google Scholar 

  35. S.M. Naga, M. Awaad, H.F. El-Maghraby, A.M. Hassan, M. Elhoriny, A. Killinger, R. Gadow, Mater. Des. 102, 1 (2016). https://doi.org/10.1016/j.matdes.2016.03.133

    Article  Google Scholar 

  36. C. Wang, L. Guo, F. Ye, Mater. Des. 111, 389 (2016). https://doi.org/10.1016/j.matdes.2016.09.014

    Article  Google Scholar 

  37. Y. Wu, W. He, H. Guo, Ceram. Int. 46(10), 16612 (2020). https://doi.org/10.1016/j.ceramint.2020.03.234

    Article  Google Scholar 

  38. M.P. Schmitt, J.L. Stokes, A.K. Rai, A.J. Schwartz, D.E. Wolfe, J. Am. Ceram. Soc. 102(8), 4781 (2019). https://doi.org/10.1111/jace.16317

    Article  Google Scholar 

  39. L. Guo, Z. Yan, X. Dong, X. Liu, F. Ye, Compos. B Eng. 161, 473 (2019). https://doi.org/10.1016/j.compositesb.2018.12.135

    Article  Google Scholar 

  40. P. Zhang, Y. Feng, Y. Li, W. Pan, P.-A. Zong, M. Huang, Y. Han, Z. Yang, H. Chen, Q. Gong, C. Wan, Scripta Mater. 180, 51 (2020). https://doi.org/10.1016/j.scriptamat.2020.01.026

    Article  Google Scholar 

  41. Y. Liu, Y. Bai, E. Li, Y. Qi, C. Liu, H. Dong, R. Jia, W. Ma, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122904

    Article  Google Scholar 

  42. A.M. Bolon, T.A. Sisneros, A.B. Schubert, B. Clausen, D.W. Brown, M.M. Gentleman, J. Eur. Ceram. Soc. 35(2), 623 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.013

    Article  Google Scholar 

  43. S. Ariharan, A. Nisar, N. Balaji, S.T. Aruna, K. Balani, Compos. B Eng. 124, 76 (2017). https://doi.org/10.1016/j.compositesb.2017.05.032

    Article  Google Scholar 

  44. J. Zhang, Y. Bai, E. Li, H. Dong, W. Ma, Int. J. Appl. Ceram. Technol. 17(4), 1608 (2020). https://doi.org/10.1111/ijac.13500

    Article  Google Scholar 

  45. Y. Zhang, L. Guo, X. Zhao, F. Ye, Mater. Lett. 136, 157 (2014). https://doi.org/10.1016/j.matlet.2014.08.065

    Article  Google Scholar 

  46. Y. Zhang, J. Malzbender, D.E. Mack, M.O. Jarligo, X. Cao, Q. Li, R. Vaßen, D. Stöver, Ceram. Int. 39(7), 7595 (2013). https://doi.org/10.1016/j.ceramint.2013.03.014

    Article  Google Scholar 

  47. M. Li, L. Guo, F. Ye, Ceram. Int. 42(15), 16584 (2016). https://doi.org/10.1016/j.ceramint.2016.07.079

    Article  Google Scholar 

  48. J. Wang, J. Sun, Q. Jing, B. Liu, H. Zhang, Y. Yongsheng, J. Yuan, S. Dong, X. Zhou, X. Cao, J. Eur. Ceram. Soc. 38(7), 2841 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.019

    Article  Google Scholar 

  49. L. Ma, W. Ma, X. Sun, L. Ji, J. Liu, K. Hang, J. Alloys Compd. 644, 416 (2015). https://doi.org/10.1016/j.jallcom.2015.05.054

    Article  Google Scholar 

  50. Y. Cao, C. Li, Y. Ma, H. Luo, Y. Yang, H. Guo, Ceram. Int. 45(10), 12851 (2019). https://doi.org/10.1016/j.ceramint.2019.03.208

    Article  Google Scholar 

  51. A. Loganathan, A.S. Gandhi, Mater. Sci. Eng. A 556, 927 (2012). https://doi.org/10.1016/j.msea.2012.07.095

    Article  Google Scholar 

  52. Y. Zhang, L. Guo, X. Zhao, C. Wang, F. Ye, Mater. Sci. Eng. A 648, 385 (2015). https://doi.org/10.1016/j.msea.2015.09.081

    Article  Google Scholar 

  53. K. Balani, S.R. Bakshi, Y. Chen, T. Laha, A. Agarwal, J. Nanosci. Nanotechnol. 7(10), 3553 (2007). https://doi.org/10.1166/jnn.2007.851

    Article  Google Scholar 

  54. Y. Fang, X. Cui, G. Jin, B. Lu, F. Wang, M. Liu, X. Wen, Ceram. Int. 44(15), 18285 (2018). https://doi.org/10.1016/j.ceramint.2018.07.040

    Article  Google Scholar 

  55. M. Xue, S. Liu, X. Wang, K. Jiang, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122693

    Article  Google Scholar 

  56. S.M. Hashemi, N. Parvin, Z. Valefi, Ceram. Int. 45(5), 5284 (2019). https://doi.org/10.1016/j.ceramint.2018.11.226

    Article  Google Scholar 

  57. L. Xiang, Powder Metall. Technol. 33(06), 403–406 + 416 (2015). https://doi.org/10.19591/j.cnki.cn11-1974/tf.2015.06.001

  58. M.-J. Liu, K.-J. Zhang, Q. Zhang, M. Zhang, G.-J. Yang, C.-X. Li, C.-J. Li, Appl. Surf. Sci. 471, 950 (2019). https://doi.org/10.1016/j.apsusc.2018.12.070

    Article  ADS  Google Scholar 

  59. X.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24(1), 1 (2004). https://doi.org/10.1016/s0955-2219(03)00129-8

    Article  Google Scholar 

  60. E. Bakan, R. Vaßen, J. Therm. Spray Technol. 26(6), 992 (2017). https://doi.org/10.1007/s11666-017-0597-7

    Article  ADS  Google Scholar 

  61. W. Acchar, A.M. Segadães, Int. J. Refract. Met. Hard Mater. 27(2), 427 (2009). https://doi.org/10.1016/j.ijrmhm.2008.05.004

    Article  Google Scholar 

  62. R.G. Munro, J. Am. Ceram. Soc. 80, 1919 (1997)

    Article  Google Scholar 

  63. K.T. Faber, A.G. Evans, Acta Metallurgica. 31(4), 565–576 (1983). https://doi.org/10.1016/0001-6160(83)90046-9

  64. J.H. Ahn, J.‐H. Lee, S.‐H. Hong, N.‐M. Hwang, D.‐Y. Kim, J. Am. Ceram. Soc. (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03486.x.

  65. X. Zhao, H. Li, Z. Xu, K. Li, S. Cao, G. Jiang, Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.05.042

    Article  Google Scholar 

  66. W. He, Y. Ai, B. Liang, W. Chen, C. Liu, Mater. Sci. Eng. A 723, 134 (2018). https://doi.org/10.1016/j.msea.2018.03.057

    Article  Google Scholar 

  67. S.-R. Yan, Z. Lyu, L.K. Foong, Ceram. Int. 46(11), 18813 (2020). https://doi.org/10.1016/j.ceramint.2020.04.199

    Article  Google Scholar 

  68. X. Zhang, L. Xu, S. Du, J. Han, P. Hu, W. Han, Mater. Lett. 62(6–7), 1058 (2008). https://doi.org/10.1016/j.matlet.2007.07.044

    Article  Google Scholar 

  69. Q.M. Yu, Q. He, F.L. Ning, Ceram. Int. 44(17), 21349 (2018). https://doi.org/10.1016/j.ceramint.2018.08.188

    Article  Google Scholar 

  70. Y. Zhou, G.M. Song, Y. Sun, T.C. Lei, Ceram. Int. 24, 455 (1998)

    Article  Google Scholar 

  71. W.C. Tian Haolianga, G. Mengqiua, G. Junguoa, C. Yongjinga, W. Fuyuanb, L. Erbaob, J. Guob, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.10.186

    Article  Google Scholar 

  72. C. Wang, L. Guo, Y. Zhang, X. Zhao, F. Ye, Ceram. Int. 41(9), 10730 (2015). https://doi.org/10.1016/j.ceramint.2015.05.008

    Article  Google Scholar 

  73. K. Watanabe, T. Kawasaki, H. Tanaka, Nat Mater 10(7), 512 (2011). https://doi.org/10.1038/nmat3034

    Article  ADS  Google Scholar 

  74. C. Mercer, J.R. Williams, D.R. Clarke, A.G. Evans, Proc. R. Soc. A 463(2081), 1393 (2007). https://doi.org/10.1098/rspa.2007.1829

    Article  ADS  Google Scholar 

  75. P. Wu, M. Hu, L. Chen, F. Wu, X. Chong, J. Feng, J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.16118

    Article  Google Scholar 

  76. A.M. Limarga, S. Shian, R.M. Leckie, C.G. Levi, D.R. Clarke, J. Eur. Ceram. Soc. 34(12), 3085 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.03.013

    Article  Google Scholar 

  77. Y. Wang, H. Yang, R. Liu, Y. Cao, S. Wang, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.121

    Article  Google Scholar 

  78. M.B. Ponnuchamy, A.S. Gandhi, J. Eur. Ceram. Soc. 35(6), 1879 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.027

    Article  Google Scholar 

  79. T.A. Schaedler, R.M. Leckie, S. Kraemer, A.G. Evans, C.G. Levi, J. Am. Ceram. Soc. 90(12), 3896 (2007). https://doi.org/10.1111/j.1551-2916.2007.01990.x

    Article  Google Scholar 

  80. Z. Zeng, Y. Liu, Y. Zhang, Z. Zhou, X. Liu, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153177

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Youth Foundation (Grant No. 51705474), Scientific and Technological Project of Henan Province (Grant No. 212102210299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, R., Zhang, G. et al. Toughening Mechanism of Thermal Barrier Coatings. Int J Thermophys 42, 69 (2021). https://doi.org/10.1007/s10765-021-02820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02820-1

Keywords

Navigation