Skip to main content
Log in

Thermal Conductivity of Silica Aerogel Thermal Insulation Coatings

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, silica aerogel microspheres were prepared through sol–gel method with tetraethyl orthosilicate as the silicon source. Thermal insulation coatings were prepared by mixing silica aerogel and acrylic emulsion. The relationships between the thermal conductivity and volume fractions, densities, sizes, and interfaces of silica aerogel microspheres were investigated through scanning electron microscopy and thermal conductivity analysis. The thermal insulation mechanism of composite coating was discussed in detail. Results showed that the aggregations prevented the decrease of thermal conductivity in the coating when the volume fraction of silica aerogel microspheres was lower than 30 %. However, the pores in the coating reduced the thermal conductivity when the volume fraction was higher than 30 %. The porosity of silica aerogel increased with the declining density, which improved the thermal insulation performance of silica aerogel and reduced the thermal conductivity of the coating. The thermal conductivity of the coating with large microspheres was lower than that with small microspheres at low volume fractions. However, the thermal conductivity of the coating with small silica aerogel microspheres was low because of their large interfacial thermal resistance at high volume fractions. Wetting agents were beneficial in improving the compatibility of hydrophobic aerogel microspheres and polymer, improving the volume fractions of silica aerogel microspheres in the coating, and reducing the thermal conductivity of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Fricke, T. Tillotson, Thin Solid Films 297, 212–223 (1997)

    Article  ADS  Google Scholar 

  2. T. Xie, Y.L. He, Z.X. Tong, Int. J. Heat. Mass. Tran. 68, 633–640 (2014)

    Article  Google Scholar 

  3. C.Y. Kim, J.K. Yu, B.L. Kim, Colloid Surf. A 313, 179–182 (2008)

    Article  Google Scholar 

  4. B. Yuan, S.Q. Ding, D.D. Wang, G. Wang, H.X. Li, Mater. Lett. 76, 204–206 (2012)

    Article  Google Scholar 

  5. X.G. Yang, Y. Sun, D.Q. Shi, Mater. Sci. Eng., A 528, 4830–4836 (2011)

    Article  Google Scholar 

  6. Z. Shao, Y. Zhang, X. Cheng, Prog. Chem Beijing 26, 1329–1338 (2014)

    Google Scholar 

  7. S. Jun, Z. Bin, Chin. J. Process Eng. 04, 341–345 (2002)

    Google Scholar 

  8. Y. Agari, T. Uno, J. Appl. Poly. Sci. 32, 5705–5712 (1986)

    Article  Google Scholar 

  9. Y. Agari, A. Ueda, S.N. Gai, J. Appl. Polym. Sci. 42, 1665–1669 (1991)

    Article  Google Scholar 

  10. G.S. Kim, S.H. Yun, J. Mater. Sci. 38, 1961–1966 (2003)

    Article  ADS  Google Scholar 

  11. D.D. Ge, L.L. Yang, Y. Li, J. Non-Cryst. Solids 355, 2610–2615 (2009)

    Article  ADS  Google Scholar 

  12. D. Valerie, L. Thomas, M. Harris, D.C. Teeters, J. Non-Cryst. Solids 283, 11–17 (2001)

    Article  ADS  Google Scholar 

  13. D. Nuyttens, K. Baetens, M.D. Schampheleire, Biosyst. Eng. 97, 333–345 (2007)

    Article  Google Scholar 

  14. G. Lumbeck, F. Horst, Aqueous dispersion of a hydrophobic silica, United State Patent. NO.US4274883(A) (1981)

  15. L. Kocon, F. Despetis, J. Phalippou, J. Non-Cryst. Solids 225, 95–100 (1998)

    Article  ADS  Google Scholar 

  16. T.M. Tillotson, L.W. Hrubesh, J. Non-Cryst. Solids 145, 44–50 (1992)

    Article  ADS  Google Scholar 

  17. K.H. Lee, S.Y. Kim, K.P. Yoo, J. Non-Cryst. Solids 186, 18–22 (1995)

    Article  ADS  Google Scholar 

  18. Q.D. Ping, Z.F. Cheng, Dev. Appl. Mater. 25, 38–40 (2010). [in Chinese]

    ADS  Google Scholar 

  19. D. Büttner, E. Hümmer, J. Fricke, Springer Proceeding in Physics. 6, 116–120 (1986)

  20. C.W. Nan, R. Birringer, D.R. Clarke, J. Appl. Phys. 81, 6692–6699 (1997)

    Article  ADS  Google Scholar 

  21. W.J. Jun, Y.X. Su, Compos. Sci. Technol. 64, 1623–1628 (2004)

    Article  Google Scholar 

  22. A.G. Every, Y.T. Zou, D.P.H. Hasselman, R. Raj, Acta Metallu. Mater. 40, 123–129 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Project of Science and Technology Department of Henan Province (No. 182300410181) and the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF) (No. 11076010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Qi, Z., Zhen, W. et al. Thermal Conductivity of Silica Aerogel Thermal Insulation Coatings. Int J Thermophys 40, 92 (2019). https://doi.org/10.1007/s10765-019-2565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2565-6

Keywords

Navigation