Skip to main content
Log in

The \({\rm sech}\left( {\hat{\xi }} \right) \)-Type Profiles: A Swiss-Army Knife for Exact Analytical Modeling of Thermal Diffusion and Wave Propagation in Graded Media

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called \( {\rm sech}\left( {\hat{\xi }} \right) \)-type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell’s equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a “high-level” quadrupole model consisting of one or more \( {\rm sech}\left( {\hat{\xi }} \right) \)-type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.M. Mahamood, E.T. Akinlabi, Functionally Graded Materials (Springer, Berlin, 2017)

    Book  Google Scholar 

  2. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford Univ. Press, Oxford, 1959)

    MATH  Google Scholar 

  3. A.K.S. Thakur, Lett. Heat Mass Transf. 9, 385 (1982)

    Article  Google Scholar 

  4. W.J. Massman, Soil Sci. 155, 331 (1993)

    Article  ADS  Google Scholar 

  5. J. Fivez, C. Glorieux, J. Appl. Phys. 108, 103506 (2010)

    Article  ADS  Google Scholar 

  6. A. Sutradhar, G.H. Paulino, Comput. Methods Appl. Mech. Engrg. 193, 4511 (2004)

    Article  ADS  Google Scholar 

  7. T. Ishiguro, A. Makino, N. Araki, N. Noda, Int. J. Thermophys. 14, 101 (1993)

    Article  ADS  Google Scholar 

  8. J.-C. Krapez, S. Profice, in Proc. SFT 2011, F. Bataille and G. Flamant eds., Editions SFT (2011), p. 293

  9. J.J. Alvarado-Leaños, J. Ordonez-Miranda, J.J. Alvarado-Gil, Int. J. of Thermophys. 34, 1457 (2013)

    Article  ADS  Google Scholar 

  10. C. Glorieux, J. Fivez, J. Thoen, J. Appl. Phys. 73, 684 (1993)

    Article  ADS  Google Scholar 

  11. R. Celorrio, E. Apiñaniz, A. Mendioroz, A. Salazar, A. Mandelis, J. Appl. Phys. 107, 083519 (2010)

    Article  ADS  Google Scholar 

  12. M.S. Sodha, A. Sengupta, R.L. Sawhney, Int. J. Energy Res. 17, 121 (1993)

    Article  Google Scholar 

  13. K. Friedrich, U. Seidel, H.G. Walther, W. Karpen, G. Busse, Res. Nondestr. Eval. 5, 31 (1993)

    Article  Google Scholar 

  14. T.T.N. Lan, U. Seidel, H.G. Walther, J. Appl. Phys. 77, 4739 (1995)

    Article  ADS  Google Scholar 

  15. P. Grossel, F. Depasse, Int. J. Thermal Sci. 50, 2078 (2011)

    Article  Google Scholar 

  16. V. Gusev, T. Velinov, K. Bransalov, Semicond. Sci Technol. 4, 20 (1989)

    ADS  Google Scholar 

  17. P. Grossel, F. Depasse, N. Trannoy, J. Phys. III 7, 13 (1997)

    Google Scholar 

  18. R. Li Voti, M. Bertolotti, C. Sibilia, Adv. in Signal Processing for NDE of Materials (1997)

  19. J.-C. Krapez, J. Appl. Phys. 87, 4514 (2000)

    Article  ADS  Google Scholar 

  20. A.K.S. Thakur, M. Musa Momoh, Energy Convers. Mgmt. 23, 131 (1983)

    Article  Google Scholar 

  21. A. Mandelis, F. Funak, M. Munidasa, J. Appl. Phys. 80, 5570 (1996)

    Article  ADS  Google Scholar 

  22. R.M. Cotta, B.P. Cotta, C.P. Naveira-Cotta, G. Cotta Pereira, Int. J. Thermal Sci. 49, 1510 (2010)

    Article  Google Scholar 

  23. K.V. Khmelnytskaya, I. Serroukh, Math. Meth. Appl. Sci. 11, 065707 (2013)

    Google Scholar 

  24. J. Fivez, J. Thoen, J. Appl. Phys. 79, 2225 (1996)

    Article  ADS  Google Scholar 

  25. E. Varley, B. Seymour, Studies. Appl. Math. 78, 183 (1988)

    Google Scholar 

  26. J.-C. Krapez, Int. J. Heat Mass Transf. 99, 485 (2016)

    Article  Google Scholar 

  27. J.-C. Krapez, J. Phys: Conf. Ser. 745, 032059 (2016)

    Google Scholar 

  28. J.-C. Krapez, J. Mod. Opt. 64, 1988 (2017)

    Article  ADS  Google Scholar 

  29. D. Maillet, S. André, J.-C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms (Wiley, New-York, 2000)

    MATH  Google Scholar 

  30. J.-C. Krapez, E. Dohou, Int. J. Therm. Sci. 81, 38 (2014)

    Article  Google Scholar 

  31. D. Zwillinger, Handbook of Differential Equations (Academic Press, Cambridge, 1997)

    MATH  Google Scholar 

  32. J.-C. Krapez, Mesure de l’effusivité thermique par la méthode flash (Application aux matériaux stratifiés, DEA, ECP, 1984)

    Google Scholar 

  33. D.L. Balageas, J.C. Krapez, P. Cielo, J. Appl. Phys. 59, 348–357 (1986)

    Article  ADS  Google Scholar 

  34. A. Kusiak, J. Martan, J.L. Battaglia, R. Daniel, Thermochim. Acta 556, 1–5 (2013)

    Article  Google Scholar 

  35. V. Vavilov, S. Marinetti, Y. Pan, A. Chulkov, Polym. Testing 54, 270–280 (2016)

    Article  Google Scholar 

  36. J.G. Sun, J. Heat Transf. 138, 112004 (2016)

    Article  Google Scholar 

  37. J. Toutain, J.-L. Battaglia, C. Pradere, J. Pailhes, A. Kusiak, W. Aregba, J.-C. Batsale, J. Heat Transf. 133, 044504 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Krapez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krapez, JC. The \({\rm sech}\left( {\hat{\xi }} \right) \)-Type Profiles: A Swiss-Army Knife for Exact Analytical Modeling of Thermal Diffusion and Wave Propagation in Graded Media. Int J Thermophys 39, 86 (2018). https://doi.org/10.1007/s10765-018-2406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2406-z

Keywords

Navigation