Skip to main content
Log in

Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report on the extrinsic chirality behavior of GaAs-based NWs asymmetrically hybridized with Au. The samples are fabricated by a recently developed, lithography-free self-organized GaAs growth, with the addition of AlGaAs shell and GaAs supershell. The angled Au flux is then used to cover three-out-of-six sidewalls with a thin layer of Au. Oblique incidence and proper sample orientation can lead to circular dichroism. We characterize this chiral behavior at \( 532\,{\text{nm}} \) and \( 980\,{\text{nm}} \) by means of photo-acoustic spectroscopy, which directly measures the difference in absorption for the circularly polarized light of the opposite headedness. For the first time to our knowledge, circular dichroism is observed in both the amplitude and the phase of the photo-acoustic signal. We strongly believe that such samples can be used for chiral applications, spanning from circularly polarized light emission, to the enantioselectivity applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.K. Bisoyi, Q. Li, Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014)

    Article  Google Scholar 

  2. C. Wu et al., Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014)

    Article  Google Scholar 

  3. V.K. Valev et al., Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv. Mater. 26, 4074–4081 (2014)

    Article  Google Scholar 

  4. V.K. Valev, J.J. Baumberg, C. Sibilia, T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013)

    Article  Google Scholar 

  5. D.H. Kwon, P.L. Werner, D.H. Werner, Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt. Express 16, 11802–11807 (2008)

    Article  ADS  Google Scholar 

  6. J.K. Gansel et al., Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)

    Article  ADS  Google Scholar 

  7. M. Decker, M.W. Klein, M. Wegener, S. Linden, Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007)

    Article  ADS  Google Scholar 

  8. T. Cao, M.J. Cryan, Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial. J. Opt. 14, 085101 (2012)

    Article  ADS  Google Scholar 

  9. B.M. Maoz, A.B. Moshe, D. Vestler, O. Bar-Elli, G. Markovich, Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. Nano Lett. 12, 2357–2361 (2012)

    Article  ADS  Google Scholar 

  10. T. Cao, C. Wei, L. Mao, Y. Li, Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array. Sci. Rep. 4, 1 (2014)

    Google Scholar 

  11. T. Cao, C. Wei, L. Zhang, Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Opt. Mater. Express 4, 1526 (2014)

    Article  ADS  Google Scholar 

  12. T. Cao, C. Wei, L. Mao, S. Wang, Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene. Opt. Express 23, 18620 (2015)

    Article  ADS  Google Scholar 

  13. A. Kuzyk et al., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012)

    Article  ADS  Google Scholar 

  14. Y. He, K. Lawrence, W. Ingram, Y. Zhao, Circular dichroism based refractive index sensing using chiral metamaterials. Chem. Commun. 52, 2047–2050 (2016)

    Article  Google Scholar 

  15. E. Hendry et al., Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010)

    Article  ADS  Google Scholar 

  16. Y. Tang, A.E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011)

    Article  ADS  Google Scholar 

  17. J.B. Pendry, A chiral route to negative refraction. Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  18. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality. Phys. Rev. B 79, 121104 (2009)

    Article  ADS  Google Scholar 

  19. Y. Xia, Y. Zhou, Z. Tang, Chiral inorganic nanoparticles: origin, optical properties and bioapplications. Nanoscale 3, 1375–1382 (2011)

    ADS  Google Scholar 

  20. Y. Zhou et al., Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption. Angew. Chem. Int. Ed. 50, 11456–11459 (2011)

    Article  Google Scholar 

  21. Y. Li et al., Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. 50, 5860–5864 (2011)

    Article  Google Scholar 

  22. T. Verbiest, M. Kauranen, Y. Van Rompaey, A. Persoons, Optical activity of anisotropic achiral surfaces. Phys. Rev. Lett. 77, 1456–1459 (1996)

    Article  ADS  Google Scholar 

  23. M. Bertolotti, A. Belardini, A. Benedetti, C. Sibilia, Second harmonic circular dichroism by self-assembled metasurfaces. J. Opt. Soc. Am. B 32, 1287–1293 (2015)

    Article  ADS  Google Scholar 

  24. A. Belardini et al., Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 107, 257401 (2011)

    Article  ADS  Google Scholar 

  25. A. Belardini et al., Second harmonic generation on self-assembled tilted gold nanowires. Faraday Discuss. 178, 357–362 (2015)

    Article  ADS  Google Scholar 

  26. G. Leahu et al., Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Sci. Rep. 7, 2833 (2017)

    Article  ADS  Google Scholar 

  27. T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for selfcatalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)

    Article  Google Scholar 

  28. G. Leahu et al., Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold. Adv. Opt. Mater. 2017, 1601063 (2017)

    Article  Google Scholar 

  29. T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 24, 3644R (1981)

    Article  ADS  Google Scholar 

  30. E. Petronijevic, G. Leahu, V. Mussi, C. Sibilia, F.A. Bovino, Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes. AIP Adv. 7, 025210 (2017)

    Article  ADS  Google Scholar 

  31. R. Li Voti et al., Photoacoustic characterization of randomly oriented silver nanowire films. Int. J. Thermophys. 36, 1342–1348 (2015)

    Article  ADS  Google Scholar 

  32. M.C. Larciprete et al., Infrared properties of randomly oriented silver nanowires. J. Appl. Phys. 112, 083503 (2012)

    Article  ADS  Google Scholar 

  33. A. Belardini et al., Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires. Sci. Rep. 6, 31796 (2016)

    Article  ADS  Google Scholar 

  34. T. Dehoux, O.B. Wright, R. Li, Voti, “picosecond time scale imaging of mechanical contacts”. Ultrasonics 50, 197–201 (2010)

    Article  Google Scholar 

  35. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/

  36. E. Petronijevic, M. Centini, A. Belardini, G. Leahu, T. Hakkarainen, C. Sibilia, Chiral near-field manipulation in Au-GaAs hybrid hexagonal nanowires. Opt. Express 25, 14148–14157 (2017)

    Article  ADS  Google Scholar 

  37. X. Zhao, M.H. Alizadeh, B.M. Reinhard, Generating optical birefringence and chirality in silicon nanowire dimers. Accepted in ACS Photonics (2017)

  38. G. Leahu et al., Study of thermal and optical properties of SiO 2/GaN opals by photothermal deflection technique. Opt. Quant. Electron. 39, 305–310 (2007)

    Article  Google Scholar 

Download references

Funding

This work is funded by Academy of Finland Project NESP (294630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Petronijevic.

Additional information

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petronijevic, E., Leahu, G., Belardini, A. et al. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold. Int J Thermophys 39, 46 (2018). https://doi.org/10.1007/s10765-018-2367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2367-2

Keywords

Navigation