Skip to main content
Log in

Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Pohl, J. Schmidt, C. Schmiga, R. Brendel, J. Appl. Phys. 101, 073701 (2007)

    Article  ADS  Google Scholar 

  2. M. Kasemann, M.C. Schubert, M. The, M. Köber, M. Hermle, W. Warta, Appl. Phys. Lett. 89, 224102 (2006)

    Article  ADS  Google Scholar 

  3. K. Ramspeck, K. Bothe, J. Schmidt, R. Brendel, J. Appl. Phys. 106, 114506 (2009)

    Article  ADS  Google Scholar 

  4. T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Appl. Phys. Lett. 89, 044107 (2006)

    Article  ADS  Google Scholar 

  5. I. Riisness, C. Carach, M.J. Gordon, Appl. Phys. Lett. 100, 073308 (2012)

    Article  ADS  Google Scholar 

  6. A. Delamarre, L. Lombez, J.F. Guillemoles, Appl. Phys. Lett. 100, 131108 (2012)

    Article  ADS  Google Scholar 

  7. S. Herlufsen, K. Bothe, J. Schmidt, R. Brendel, S. Siemund, Sol. Energy Mater. Sol. Cells 106, 42 (2012)

    Article  Google Scholar 

  8. D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, G. Hahn, J. Appl. Phys. 110, 054508 (2011)

    Article  ADS  Google Scholar 

  9. A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B 67, 205208 (2003)

    Article  ADS  Google Scholar 

  10. J. Batista, A. Mandelis, D. Shaughnessy, B. Li, Appl. Phys. Lett. 85, 1713 (2004)

    Article  ADS  Google Scholar 

  11. A. Melnikov, A. Mandelis, J. Tolev, P. Chen, S. Huq, J. Appl. Phys. 107, 114513 (2010)

    Article  ADS  Google Scholar 

  12. A. Melnikov, B. Halliop, A. Mandelis, N.P. Kherani, Thin Solid Films 520, 5309 (2012)

    Article  ADS  Google Scholar 

  13. A. Mandelis, Y. Zhang, A. Melnikov, J. Appl. Phys. 112, 054505 (2012)

    Article  ADS  Google Scholar 

  14. A. Melnikov, P. Chen, Y. Zhang, A. Mandelis, Int. J. Thermophys. 33, 2095 (2012)

    Article  ADS  Google Scholar 

  15. Q. Sun, A. Melnikov, A. Mandelis, Appl. Phys. Lett. 101, 242107 (2012)

    Article  ADS  Google Scholar 

  16. J. Liu, A. Melnikov, A. Mandelis, J. Appl. Phys. 114, 104509 (2013)

    Article  ADS  Google Scholar 

  17. S. Grauby, B.C. Forget, S. Hole, D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999)

    Article  ADS  Google Scholar 

  18. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, Optics Express 18, 780 (2010)

    Article  ADS  Google Scholar 

  19. T. Schmidt, K. Lischka, Phys. Rev. B 45, 8989 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to NSERC for a Discovery grant, to the Canada Foundation for Innovation for equipment grants, and to the Ontario Ministry for Research and Innovation for the Inaugural Premier’s Discovery Award in Science and Technology (2007). QMS gratefully acknowledges the Academic Support Program for Outstanding PhD of UESTC, and the Central-University Basic Research Fund of UESTC (Grant No. ZYGX2012Z006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q.M., Melnikov, A. & Mandelis, A. Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers. Int J Thermophys 36, 1274–1280 (2015). https://doi.org/10.1007/s10765-014-1599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1599-z

Keywords

Navigation