Skip to main content
Log in

Alternative Method to Characterize Corn Grain by Means of Photoacoustic Spectroscopy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The application of photothermal (PT) techniques to obtain the optical and thermal properties of different materials has been widely reported in the literature. Among the PT techniques, photoacoustic spectroscopy stands out because this technique has been used to characterize different types of materials in solid, liquid, and gaseous phases, as well as homogeneous and inhomogeneous samples as biological materials which present great complexity in their structure. In particular, the seeds and corn kernels comprise different structural components such as endosperm, pericarp, embryo, and pedicel. The color attribute is very important in the grains because it gives information about the chemical composition and nutritional quality attributes which are important in consumer acceptance. In this investigation optical absorption spectra of corn grains were obtained by using photoacoustic spectroscopy in a wavelength range from 325 nm to 800 nm. Two varieties of corn grains were studied, establishing a complete block design at random for the measurements. From the obtained optical absorption spectra, the optical absorption coefficient (\(\beta \)) was calculated as a function of the wavelength for each sample. A complementary study of the percentage of reflectance for these samples was carried out by using ultraviolet/visible spectrometry with an integrating sphere. The data were subjected to an analysis of the variance using software of the statistical analysis system. The results revealed significant differences (\(P\le 0.05\)) between corn varieties in the range of 325 nm to 670 nm. The application of the photoacoustic spectroscopy technique as an alternative to conventional methods for the characterization of maize grain through an analysis of \(\beta \) could be important for characterizing non-homogeneous materials like grains of corn, whose characterization is relevant in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. Biagi, F. Margheri, L. Masotti, M. Pieraccini, Acoust. Imaging 22, 393 (2000)

    Google Scholar 

  2. R.C. García, Conciencia Tecnológica 24, 1405 (2004)

    Google Scholar 

  3. P. Lomeli, J. Alanís, A. Orea, J. Jiménez, Rev. Mex. Ingeniería Biomédica XXX, 13 (2009)

    Google Scholar 

  4. H.M.A.M. Dias, F. Berbicz, F. Pedrochi, M.L. Baesso, G. Matioli, Food Res. Int. 43, 104 (2010)

    Article  Google Scholar 

  5. S. Bialkowski, in Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, vol. 134, ed. by J.D. Winefordner (John Wiley & Sons, Inc., Hobokon, NJ, 1996), p. 4.

  6. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  7. A. Rosencwaig, Phys. Today 28, 23 (1975)

    Article  Google Scholar 

  8. G.Y. Zhang, Y.D. Jin, Guang Pu Xue Yu Guang Pu Fen 30, 297 (2010)

    Google Scholar 

  9. Q. Sun, C. Gao, B. Zhao, Y. Bi, Int. J. Thermophys. 31, 1157 (2010)

    Article  ADS  Google Scholar 

  10. M. Mendez, A. Cruz, G. Mendez, M. Garcia, F. Sanchez, Int. J. Thermophys. 31, 374 (2010)

    Article  ADS  Google Scholar 

  11. J.L. Jiménez-Pérez, J. Jiménez-Pérez, A. Brancamontes Cruz, A. Cruz-Orea, J.G. Mendoza-Alvarez, Int. J. Thermophys. 25, 503 (2004)

    Article  ADS  Google Scholar 

  12. C. Hernández Aguilar, M. Mezzalama, N. Lozano, A. Cruz-Orea, E. Martínez, R. Ivanov, A. Domínguez-Pacheco, Eur. Phys. J. Spec. Top. 153, 519 (2008)

    Article  Google Scholar 

  13. C. Hernández Aguilar, A. Carballo, A. Cruz-Orea, R. Ivanov, E.San Martín Martínez, A. Michtchenko, J. Phys. IV France 125, 853 (2005)

    Article  Google Scholar 

  14. C. Hernández, A. Domínguez, A. Cruz, R. Ivanov, A. Carballo, R. Zepeda, L. Galindo, Int. Agrophys. 23, 327 (2009)

    Google Scholar 

  15. S. Singhal, K. Singh, S. Joshi, A. Rai, Curr. Sci. 82, 172 (2002)

    Google Scholar 

  16. C. Hernández, A. Carballo, A. Cruz, R. Ivanov, A. Dominguez, Eur. Phys. J. Spec. Top. 153, 515 (2008)

    Article  Google Scholar 

  17. A. Domínguez, C. Hernández, A. Cruz, E. Martínez, E. Ayala, J. Phys. Conf. Ser. 214, 012060 (2010)

    Article  ADS  Google Scholar 

  18. A. Domínguez Pacheco, C. Hernández Aguilar, A. Cruz Orea, B.R. Briseño-Tepepa, F. Sánchez Sinéncio, E. Martínez Ortíz, J.P. Valcarcel, Int. J. Thermophys. 30, 2036 (2009)

    Article  ADS  Google Scholar 

  19. C. Hernández Aguilar, A. Cruz-Orea, R. Ivanov, A. Domínguez Pacheco, A. Carballo, I. Moreno, R. Rico, Food Biophys. 6, 481 (2011)

    Article  Google Scholar 

  20. J. Santos, L. Silveira, L. Olenka, A. Oliveira, A. Rodriguez, V. Garg, A. Bento, R. Oliveira, P. Morais, Eur. Phys. J. Spec. Top. 153, 523 (2008)

    Article  Google Scholar 

  21. D. Bicanic, D. Dimitrovski, S. Luterotti, K. Marković, C. Twisk, J. Buijnsters, O. Dóka, Food Biophys. 5, 24 (2009)

    Article  Google Scholar 

  22. D. Soares, M. Luciano, A. Neto, D. Bicanic, R. Koehorst, J. Johan, A. Carlos, J. Appl. Phys. 109, 034703 (2011)

    Article  ADS  Google Scholar 

  23. J. Favier, J. Buijs, A. Miklós, A. Lörincz, D. Bicanic, Z. Lebensm. Unters. Forsch. 199, 59 (1994)

    Article  Google Scholar 

  24. R. Muñoz, A. Calderon, A. Cruz, R. Peña, High Temp.-High Press. 32, 379 (2000)

    Article  Google Scholar 

  25. D. Williams, Poult. Sci. 71, 744 (1992)

    Article  ADS  Google Scholar 

  26. C. Spence, C. Levitan, M. Shankar, M. Zampini, Chem. Percept. 3, 68 (2010)

    Article  Google Scholar 

  27. C. Egesel, J. Wong, R. Lambert, T. Rocheford, Crop Sci. 43, 818 (2003)

    Article  Google Scholar 

  28. N. Irani, M. Hernandez, E. Grotewolda, Recent Adv. Phytochem. 37, 59 (2003)

    Article  Google Scholar 

  29. ISTA (International Seed Testing Association), Seed Sci. Technol. 21, 33 (1993)

    Google Scholar 

  30. O. Leyva, A. Carballo, J. Mejía, G. Vázquez, Rev. Fitotec. Mex. 25, 355 (2002)

    Google Scholar 

  31. J. Fernández, O. Zelaya, A. Cruz, F. Sánchez, Anal. Sci. 17, 338 (2001)

    Google Scholar 

  32. P. Poulet, J. Chambron, Appl. Phys. 53, 1738 (1979)

    Google Scholar 

  33. S. Qingde, S. Xianasheng, Y. Yuetao, W. Qin, Z. Guiwen, Prog. Nat. Sci. 6, 566 (1996)

    Google Scholar 

  34. S. Luterotti, D. Bicanic, K. Jandragic, Food Chem. 108, 316 (2007)

    Article  Google Scholar 

  35. T. Coelhoa, E. Vidotti, M. Rollemberg, A. Medina, M. Baesso, N. Cella, A. Bento, Talanta 81, 202 (2010)

    Article  Google Scholar 

  36. D. Rezende, O. Nunes, A. Oliveira, Int. J. Thermophys. 30, 1616 (2009)

    Article  ADS  Google Scholar 

  37. O. Doka, D. Bicanic, J. Buijnsters, R. Spruijt, S. Luterotti, G. Vegvari, Eur. Food Res. Technol. 230, 813 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Mexican agencies, CONACYT, COFAA, EDI, SIP, and PIFI for financial support of this work. We also acknowledge Ing. Esther Ayala, Ing. A.B. Soto, and Ing. M. Guerrero of the Physics Department of CINVESTAV-IPN for their technical support. One of the authors (A. Cruz Orea) is grateful for the economical support from Conacyt Project No. 103632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Dominguez Pacheco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, R.R., Aguilar, C.H., Pacheco, A.D. et al. Alternative Method to Characterize Corn Grain by Means of Photoacoustic Spectroscopy. Int J Thermophys 34, 1540–1548 (2013). https://doi.org/10.1007/s10765-013-1390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1390-6

Keywords

Navigation