Skip to main content
Log in

Imaging Joule Heating in an 80 nm Wide Titanium Nanowire by Thermally Modulated Fluorescence

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A fluorescent erbium/ytterbium co-doped fluoride nanocrystal glued at the end of a sharp atomic force microscope tungsten tip was used as a nanoscale thermometer. The thermally induced fluorescence quenching enabled observation of the heating and measurement of the temperature distribution in a Joule-heated 80 nm wide and 2 μm long titanium nanowire fabricated on an oxidized silicon substrate. The measurements have been carried out in an alternating heating mode by applying a modulated current on the device at low frequency. The heating is found to be inhomogeneous along the wire, and the temperature in its center increases quadratically with the applied current. Heat appears to be confined mainly along the wire, with weak lateral diffusion along the substrate and in the lateral metallic pads. The lateral resolution of this thermal measurement technique is better than 250 nm. It could also be used to study thermally induced defects in nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tessier G., Holé S., Fournier D.: Appl. Phys. Lett. 78, 2267 (2001)

    Article  ADS  Google Scholar 

  2. Ippolito S.B., Thorne S.A., Eraslan M.G., Goldberg B.B., Unlü M.S., Leblebici Y.: Appl. Phys. Lett. 84, 4529 (2004)

    Article  ADS  Google Scholar 

  3. Duquesne J.-Y., Fournier D., Frétigny C.: J. Appl. Phys. 108, 086104 (2010)

    Article  ADS  Google Scholar 

  4. Pollock H.M., Hammiche A.: J. Phys. D: Appl. Phys. 34, R23 (2001)

    Article  ADS  Google Scholar 

  5. Puyoo E., Grauby S., Rampnoux J.-M., Rouvière E., Dilhaire S.: Rev. Sci. Instrum. 81, 073701 (2010)

    Article  ADS  Google Scholar 

  6. Shi L., Majumdar A.: J. Heat Transfer 124, 329 (2002)

    Article  Google Scholar 

  7. Shi L., Plyasunov S., Bachtold A., McEuen P.L., Majumdar A.: Appl. Phys. Lett. 77, 4295 (2000)

    Article  ADS  Google Scholar 

  8. Shi L., Zhou J., Kim P., Bachtold A., Majumdar A., McEuen P.L.: J. Appl. Phys. 105, 104306 (2009)

    Article  ADS  Google Scholar 

  9. Samson B., Aigouy L., Löw P., Bergaud C., Kim B.J., Mortier M.: Appl. Phys. Lett. 92, 023101 (2008)

    Article  ADS  Google Scholar 

  10. Allison S.W., Gilles G.T.: Rev. Sci. Instrum. 68, 2615 (1997)

    Article  ADS  Google Scholar 

  11. Walker G.W., Sundar V.C., Rudzinski C.M., Wun A.W., Bawendi M.G., Nocera D.G.: Appl. Phys. Lett. 83, 3555 (2003)

    Article  ADS  Google Scholar 

  12. Saïdi E., Babinet N., Lalouat L., Lesueur J., Aigouy L., Volz S., Labéguerie-Egéa J., Mortier M.: Small 7, 259 (2011)

    Article  Google Scholar 

  13. Maestro L.M., Jacinto C., Silva U.R., Vetrone F., Capobianco J.A., Jaque D., Sole J.G.: Small 7, 1774 (2011)

    Article  Google Scholar 

  14. Jaque D., Vetrone F.: Nanoscale 4, 4301 (2012)

    Article  ADS  Google Scholar 

  15. Aigouy L., Lalouat L., Mortier M., Löw P., Bergaud C.: Rev. Sci. Instrum. 82, 036106 (2011)

    Article  ADS  Google Scholar 

  16. Auzel F.: Chem. Rev. 104, 139 (2004)

    Article  Google Scholar 

  17. You C.-Y., Sung I.M., Joe B.-K.: Appl. Phys. Lett. 89, 222513 (2006)

    Article  ADS  Google Scholar 

  18. Atabaki A.H., Shah Hosseini E., Eftekhar A.A., Yegnanarayanan S., Adibi A.: Opt. Express 18, 18312 (2010)

    Article  ADS  Google Scholar 

  19. Aigouy L., Saïdi E., Lalouat L., Labéguerie-Egéa J., Mortier M., Löw P., Bergaud C.: J. Appl. Phys. 106, 074301 (2009)

    Article  ADS  Google Scholar 

  20. de Freitas L.R., da Silva E.C., Mansanares A.M., Tessier G., Fournier D.: J. Appl. Phys. 98, 063508 (2005)

    Article  ADS  Google Scholar 

  21. Shirley C.G.: J. Appl. Phys. 57, 777 (1985)

    Article  ADS  Google Scholar 

  22. Durkan C., Schneider M.A., Welland M.E.: J. Appl. Phys. 86, 1280 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Aigouy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saïdi, E., Labéguerie-Egéa, J., Billot, L. et al. Imaging Joule Heating in an 80 nm Wide Titanium Nanowire by Thermally Modulated Fluorescence. Int J Thermophys 34, 1405–1412 (2013). https://doi.org/10.1007/s10765-012-1337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1337-3

Keywords

Navigation