Skip to main content
Log in

Transport Properties in Gases at High Temperature and Low Pressure: Comparison of Kinetic Theory with Direct Simulation Monte Carlo

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Expressions for the transport coefficients obtained from the Gross-Jackson and the Chapman–Enskog methods are used to derive explicit relations incorporating the internal energy of the molecules for pure polyatomic gases and for binary mixtures of gases. Various coefficients such as the binary diffusion, thermal conductivity, and the viscosity coefficients and the thermal diffusion factor are calculated and a comparison with the direct simulation Monte Carlo (DSMC) method is carried out. The results show that the contribution of the internal energy is important and cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Impact parameter

\({c_p^{\rm rot}}\) :

Molecular specific heat of rotation, J · K−1

\({c_p^{\rm vib}}\) :

Molecular specific heat of vibration, J · K−1

dtm :

Time step, s

d p , d q :

Diameter of molecule p or q, m

D pq :

Coefficient of diffusion in a binary gas mixture, m2 · s−1

[D pq ]N=L :

Lth-order approximation of D pq , m2 · s−1

\({D_p^{\rm T} ,D_q^{\rm T}}\) :

Coefficient of thermal diffusion, kg · m−1 · s−1

[D T]N=L :

Lth-order approximation of DT, kg · m−1 · s−1

D pp :

Coefficient of self diffusion, m2 · s−1

g pq :

Relative velocity vector of the colliding molecules, m · s−1

\({I_{ij}^{kl}}\) :

Differential collision cross section, m2

(j p )N=3 :

Flux vector, kg · m−2 · s−1

k :

Boltzmann constant, \({k = 1.38 \times 10^{-23}\;{J} \cdot {K}^{-1}}\)

Kn :

Knudsen number

K tot :

Total coefficient of thermal conductivity, W · m−1 · K−1

K trans :

Translational thermal conductivity, W · m−1 · K−1

K rot :

Rotational thermal conductivity, W · m−1 · K−1

K vib :

Vibrational thermal conductivity, W · m−1· K−1

k T :

Thermal diffusion ratio

m p , m q :

Mass of molecule p or q, kg

m pq :

Reduced mass of molecules p and q, kg

N :

Total number of molecules

n :

Total number density, m−3

n p , n q :

Number density of species p and q, m−3

P :

Pressure, N · m−2

q :

Heat flux vector, W · m−2

Q :

Total collision cross section, m2

r :

Intermolecular separation, m

r :

Position vector, m

T :

Temperature, K

v p :

Diffusion velocity of species p, m · s−1

X p , X q :

Mole fraction of species p or q

\({Z_p^{\rm rot}}\) :

Rotational relaxation collision number for molecule p

\({Z_p^{\rm vib}}\) :

Vibrational relaxation collision number for molecule p

α pq :

Parameter for VSS potential

α T :

Thermal diffusion factor

Γ :

Euler’s Gamma function

γ :

Dimensionless relative velocity vector

λ :

Mean free path, m

\({\varphi (r)}\) :

Intermolecular potential

\({\varphi}\) :

Azimuthal angle, radian

μ :

Shear viscosity, kg · m−1 · s−1

ν :

Collision rate, s−1

Ω :

Solid angle of diffusion, steradian

\({{\bf \Omega}_{pq}^{({l,s})}}\) :

Collision integral

ρ :

Density, kg · m−3

ω p , ω q :

Temperature exponent of the viscosity coefficient for VSS or VHS potentials

χ :

Deflection angle, radian

θ r :

Characteristic temperature of rotational mode, K

θ v :

Characteristic temperature of vibrational mode, K

τ :

Viscosity stress tensor, N · m−2

int:

Internal modes

p,q :

Particular molecular species

ref:

Reference value

trans:

Translational modes

rot:

Rotational modes

vib:

Vibrational modes

References

  1. Kogan M.N.: Rarefied Gas Dynamics. Plenum Press, New-York (1969)

    Google Scholar 

  2. Velasco R.M., Uribe F.J.: Physica A 134, 339 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. Gross E.P., Jackson E.A.: Phys. Fluids 2, 432 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Chapman S., Cowling T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  5. Brun R.: Transport et Relaxation dans les Ecoulements Gazeux. Masson, Paris (1986)

    Google Scholar 

  6. Hirschfelder J.O., Curtiss C.F., Bird R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1964)

    Google Scholar 

  7. McCourt F.R.W., Beenakker J.J.M., Kohler W.E., Kuscer I.: Nonequilibrium Phenomena in Polyatomic Gases. Oxford Science Publications, Oxford (1990)

    Google Scholar 

  8. Mason E.A., Monchick L.: J. Chem. Phys. 36, 1622 (1962)

    Article  ADS  Google Scholar 

  9. Monchick L., Yun K.S., Mason E.A.: J. Chem. Phys. 39, 654 (1963)

    Article  ADS  Google Scholar 

  10. Philippi P.C., Brun R.: Physica A 105, 147 (1981)

    Article  ADS  Google Scholar 

  11. Monchick L., Pereira A.N.G., Mason E.A.: J. Chem. Phys. 42, 3241 (1965)

    Article  ADS  Google Scholar 

  12. Koura K., Matsumoto H.: Phys. Fluids A 3, 2459 (1991)

    Article  MATH  ADS  Google Scholar 

  13. Koura K., Matsumoto H.: Phys. Fluids A 4, 1083 (1992)

    Article  ADS  Google Scholar 

  14. Parker J.G.: Phys. Fluids 2, 449 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  15. Lambert J.D.: Vibrational and Rotational Relaxation in Gases. Clarendon, Oxford (1977)

    Google Scholar 

  16. Millikan D.R., White R.C.: J. Chem. Phys. 39, 3209 (1963)

    Article  ADS  Google Scholar 

  17. Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  18. Borgnakke C., Larsen P.S.: J. Comp. Phys. 18, 405 (1975)

    Article  ADS  Google Scholar 

  19. Bock S., Bich E., Vogel E., Dickinson A.S., Vesovic V.: J. Chem. Phys. 120, 7987 (2004)

    Article  ADS  Google Scholar 

  20. Pascal S., Brun R.: Phys. Rev. E 47, 3251 (1993)

    Article  ADS  Google Scholar 

  21. G.A. Bird, in Rarefied Gas Dynamics, ed. by S.S.Fisher (Progress in Astronautics and Aeronautics, AIAA, New York, 1981), pp. 239–255

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Djafri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omeiri, D., Djafri, D.E. Transport Properties in Gases at High Temperature and Low Pressure: Comparison of Kinetic Theory with Direct Simulation Monte Carlo. Int J Thermophys 31, 1111–1130 (2010). https://doi.org/10.1007/s10765-010-0771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0771-3

Keywords

Navigation