Skip to main content
Log in

Study on Surface Tension of Fluid Helium Three

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

As a standard property of helium-3, the surface tension is not only an important aspect to study the normal characteristics of this special cryogenic fluid, but also helpful to understand the Fermi quantum effects at low temperatures. After completion of studies on the thermodynamic and two typical transport properties (thermal conductivity and viscosity) of helium-3, all of the published experimental data of the surface tension of 3He have been collected. Different measurement techniques are compared and analyzed. The peculiar behavior of 3He surface tension, perhaps dominated by Fermi-Dirac quantum statistics, is analyzed and discussed at temperatures starting from zero to its critical point (3.3157 K). Based on a regular theoretical model for surface tension, a semi-empirical correlation is proposed for 3He covering the whole temperature range. The surface tension extrapolated to zero temperature by this equation is 1.5579×10−4 N · m−1. In the vicinity of the critical point, the equation could be smoothly switched to the known scaling law, which takes the critical index 1.289. Comparison for the surface-tension behavior is performed between 3He and its isotope 4He, which obeys Bose-Einstein statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y.H., Chen G.B.: Phys. Rev. B. 72, 184513 (2005)

    Article  ADS  Google Scholar 

  2. Huang Y.H., Chen G.B.: Cryogenics 46, 833 (2006)

    Article  ADS  Google Scholar 

  3. Huang Y.H., Chen G.B.: Cryogenics. 142, 7 (2004) [in Chinese]

    Google Scholar 

  4. Huang Y.H., Chen G.B., Li X.Y., Arp V.D.: Int. J. Thermophys. 26, 729 (2005)

    Article  Google Scholar 

  5. Huang Y.H., Chen G.B., Arp V.D.: J. Chem. Phys. 125, 054505 (2006)

    Article  ADS  Google Scholar 

  6. Esel’son B.N., Bereznyak N.G.: Doklady Akademii Nauk S.S.S.R. 99, 365 (1954)

    Google Scholar 

  7. Lovejoy D.R.: Can. J. Phys. 33, 49 (1955)

    Google Scholar 

  8. Zinov’eva K.N.: Sov. Phys. JETP (Engl. Transl.) 1, 173 (1955)

    Google Scholar 

  9. Zinov’eva K.N.: Sov. Phys. JETP (Engl. Transl.) 2, 774 (1956)

    Google Scholar 

  10. Iino M., Suzuki M., Ikushima A.J., Okuda Y.: J. Low Temp. Phys. 59, 291 (1985)

    Article  ADS  Google Scholar 

  11. Iino M., Suzuki M., Ikushima A.J.: J. Low Temp. Phys. 63, 495 (1986)

    Article  ADS  Google Scholar 

  12. Pollara L.Z.: J. Phys. Chem. 46, 1163 (1942)

    Article  Google Scholar 

  13. Atkins K.R.: Can. J. Phys. 31, 1165 (1953)

    MATH  Google Scholar 

  14. Guo H.M., Edwards D.O., Sarwinski R.E., Tough J.T.: Phys. Rev. Lett. 27, 1259 (1971)

    Article  ADS  Google Scholar 

  15. Singh A.D.: Phys. Rev. 125, 802 (1962)

    Article  ADS  Google Scholar 

  16. Donnelly R.J., Barenghl C.F.: J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.H., Zhang, P. & Wang, R.Z. Study on Surface Tension of Fluid Helium Three. Int J Thermophys 29, 1321–1327 (2008). https://doi.org/10.1007/s10765-008-0466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0466-1

Keywords

Navigation