Skip to main content
Log in

Real-Time Sensing of the Thermal Diffusivity for Dynamic Control of Anisotropic Heat Conduction of Liquid Crystals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Molecular orientational order can be used to characterize the anisotropic behavior in mechanical, optical, and thermophysical properties. The creation of appropriate molecular orientation has the potential for producing a novel material or thermal switching device, which can control anisotropic heat conduction. Liquid crystals, which are widely used in display elements, have anisotropy not only in their optical, but also in their thermophysical properties, under given molecular orientational alignment conditions; this material can be a variable device with anisotropic heat conduction by controlling the molecular alignment. In the present study, a real-time sensing system for thermal diffusivity using the forced Rayleigh scattering (FRS) method was developed to investigate the transient behavior in the thermal anisotropy of nematic liquid crystals. This technique can be used to measure the in-plane thermal diffusivity perpendicular to the transient thermal grating created by interfering pulsed laser beams, and the thermal anisotropy of the sample can be determined using this non-contact method. The present FRS system can provide continuous measurements of the thermal diffusivity with subsecond time resolution, allowing evaluation of the dynamic behavior of anisotropy in the thermal diffusivity even during a transient process. In this article, the anisotropy of the in-plane thermal diffusivity of 4-4′-pentyl-4-biphenylcarbonitrile (5CB) with molecular alignment induced by either a rubbed substrate or an electric field has been measured. Also, the time evolution of the anisotropic thermal diffusivity in real-time under a dynamically controlled external electric field has been measured. The experimental results demonstrate the capability of dynamic anisotropic control of heat conduction by molecular alignment variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005)

  2. Nagano H., Ohnishi A. and Nagasaka Y. (2001). J. Thermophys. Heat Transfer 15: 347

    Article  Google Scholar 

  3. S. Chandrasekhar, Liquid Crystals, 2nd edn. (Cambridge University Press, 1992)

  4. Wu S.T. and Wu C.S. (1989). J. Appl. Phys. 65: 527

    Article  ADS  Google Scholar 

  5. Bougrioua F., Oepts W., Vleeschouwer H.D., Alexsander E., Neyts K. and Pauwels H. (2002). Jpn. J. Appl. Phys. 41: 5676

    Article  ADS  Google Scholar 

  6. Knibbe P.G. (1987). J. Phys. E: Sci. Instrum. 20: 1205

    Article  ADS  Google Scholar 

  7. Taketoshi N., Baba T. and Ono A. (2005). Rev. Sci. Instrum. 76: 1

    Article  Google Scholar 

  8. Motosuke M., Nagasaka Y. and Nagashima A. (2005). Int. J. Thermophys. 26: 969

    Article  Google Scholar 

  9. H.J. Eichler, P. Gunter, D.W. Pohl, Laser-Induced Dynamic Gratings, Springer Series in Optical Sciences, vol. 50 (Springer-Verlag, Berlin, 1986)

  10. Nagasaka Y., Hatakeyama T., Okuda M. and Nagashima A. (1988). Rev. Sci. Instrum. 59: 1156

    Article  ADS  Google Scholar 

  11. Klein W.R., Cook B.D. and Mayer W.G. (1967). Acustica 15: 67

    Google Scholar 

  12. Motosuke M., Nagasaka Y. and Nagashima A. (2004). Int. J. Thermophys. 25: 519

    Article  Google Scholar 

  13. Bogi A. and Faetti S. (2001). Liq. Cryst. 28: 729

    Article  Google Scholar 

  14. Dunmur D.A. and Muhoray P.P. (1988). J. Phys. Chem. 92: 1406

    Article  Google Scholar 

  15. Chirtoc I., Chirtoc M., Glorieux C. and Thoen J. (2004). Liq. Cryst. 31: 229

    Article  Google Scholar 

  16. Ahlers G., Cannell D.S., Berge L.I. and Sakurai S. (1994). Phys. Rev. E 49: 545

    Article  ADS  Google Scholar 

  17. Marinelli M., Mercuri F., Zammit U. and Scudieri F. (1998). Phys. Rev. E 58: 5860

    Article  ADS  Google Scholar 

  18. Urbach W., Hervet H. and Rondelez F. (1983). J. Chem. Phys. 78: 5113

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Motosuke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motosuke, M., Nagasaka, Y. Real-Time Sensing of the Thermal Diffusivity for Dynamic Control of Anisotropic Heat Conduction of Liquid Crystals. Int J Thermophys 29, 2025–2035 (2008). https://doi.org/10.1007/s10765-007-0324-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0324-6

Keywords

Navigation