Skip to main content
Log in

Thermophysical Properties of Solid Phase Zirconium at High Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

 

This paper presents experimental results on the thermophysical properties of relatively pure polycrystalline zirconium samples in the solid phase from room temperature up to near the melting point. The specific heat capacity and specific electrical resistivity were measured from 290 to 1970 K, the hemispherical total emissivity from 1400 to 2000 K, the normal spectral emissivity from 1480 to 1940 K, and the thermal diffusivity in the range from 290 to 1470 K. From these data, the thermal conductivity and Lorentz number were computed in the range from 290 to 1470 K. For necessary corrections the most recent values of the linear thermal expansion from the literature have been used. Subsecond pulse calorimetry for measuring heat capacity, specific electrical resistivity, and both emissivities and the laser flash method for measuring thermal diffusivity were applied. Samples in the form of a thin rod and in the form of a thin disk were used in the first and second methods, respectively. Measurement uncertainties were generally about 3% for heat capacity, 1.6% for specific electrical resistivity, 3–10% for the two emissivities, and from less than 1% up to 6% for thermal diffusivity. All the results are discussed in reference to available literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwicker C. (1926). Physica 6:361

    Google Scholar 

  2. Guillermet A.F. (1987). High Temps High Press. 19:119

    Google Scholar 

  3. Peletskii,V.E., Grishcuk, A.P., Musaeva, Z.A. Teplofiz. Vys. Temp. 30:1090 (1992) [in Russian].

  4. L. Binkele and M. Brunen, Thermal Conductivity, Electrical Resistivity and Lorentz Data for Metallic Elements in the Range 273 to 1500 K (Report Jül-3006, Forschungszentrum Jülich GmbH, 1994).

  5. Fink J.K., Leibowitz L. (1995). J. Nucl. Mater. 226:44

    Article  ADS  Google Scholar 

  6. Petrova I.I., Peletskii V.E., Samsonov B.N. (2000). High Temp. 38:560

    Google Scholar 

  7. Korobenko V.N., Savvatimskiy A.I., Sevostyanov K.K. (2001). High Temp. High Press. 33:647

    Article  Google Scholar 

  8. V. E. Zinovyev,Metallurgia (Nauka, Moscow, 1989), p. 227 [in Russian].

  9. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou,Thermophysical Properties of Matter, Vol. 10, Thermal Diffusivity , Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum, New York, Washington, 1973), p. 220.

  10. N. D. Milošević and K. D. Maglić, Int. J. Thermophys (Online first, 2006).

  11. Maglić K.D., Cezairliyan A., Peletsky V.E. (1992). Compendium of Thermophysical Property Measurement Methods, Vol. 2, Recommended Measurement Techniques and Practices. Plenum, New York

    Google Scholar 

  12. Dobrosavljević A.S., Maglić K.D. (1989). High Temp. High Press. 21:411

    Google Scholar 

  13. Milošević N.D., Raynaud M., Laurent M., Maglić K.D. (1999). Therm. Sci. 3:71

    Google Scholar 

  14. Petukhov V.(2003/2004). High Temp. High Press. 35/36:15

    Article  Google Scholar 

  15. Cezairliyan A., Righini F. (1974). J. Res. Natl. Bur. Stand. 78A:509

    Google Scholar 

  16. S. Konopken and R. Klemm, NASA-SP-31 (1963), p. 505.

  17. Timrot D.L., Peletskii V.E. (1965). High Temp. 3:199

    Google Scholar 

  18. V. E. Peletskii, V. P. Druzinin, and Ya. G. Sobol,Teplofiz. Vys. Temp. 4:774 (1970) [in Russian].

  19. Jain S.C., Sinha V., Reddy B.K. (1970). J Phys. D 3:1359

    Article  ADS  Google Scholar 

  20. J. A. Coffman, G. M. Kibler, T. F. Lyon, and B. D. Acchione, WADD-TR-60–646, Pt. 2, (1963).

  21. S. C. Furman and P. A. McManus, USAEC, GEAP-3338 (1960).

  22. Cubicciotti D. (1951). J. Am. Chem. Soc.73:2032

    Article  Google Scholar 

  23. Douglas T.B., Victor A.C. (1958). J. Res. Natl. Bur. Stand. 61:13

    Google Scholar 

  24. I. B. Fieldhouse and J. I. Lang,WADD TR 60–904 (1961).

  25. O. Vollmer, M. Braun, and R. Kohlhaas,Z. Naturforschg. 22A:833 (1967) [in German].

  26. Coughlin J.P., King E.G. (1950). J. Am. Chem. Soc. 72:2262

    Article  Google Scholar 

  27. Skinner G.B., Johnston H.L. (1951). J. Am. Chem. Soc. 73:4549

    Article  Google Scholar 

  28. L. V. Gurvich, Thermodynamical Properties of Elements, Vol. II, L. V.Gurvich, I. V. Veitz, V. A. Medvedev, G. A. Bergman, V. S. Yungman, G. A. Hachkuruzov, V. S. Yurishtz, O. V. Dorofeyeva, E. L. Osina, P. I. Tolmach, I. N. Przevalskii, I. N. Nazarenko, N. M. Aristova, E. A. Shenyavskaya, L. N. Gorohov, A. L. Rogatzkii, M. E. Efimov, V. Ya. , Yu. G. Havt, A. G. Efimova, S. E. Tomberg, A. V. Gusarov, N. E. Handamirova, G. N. Yurkov, L. R. Fokin, L. F. Kuratova, and V. G. Ryabova, eds. (Nauka, Moscow, 1962), p. 586 [in Russian].

  29. Cezairliyan A., Righini F. (1974). J. Res. Natl. Bur. Stand. 79A:81

    Google Scholar 

  30. Y. S. Touloukian and E. H. Buyco,Thermophysical Properties of Matter, Vol. 4, Specific Heat of Metallic Elements and Alloys , Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum, New York, Washington, 1970), p. 287.

  31. J. L. Scott,USAEC, ORNL-2328 (1957).

  32. S. A. Katz, V. Ya. Chekhovskoi, and M. D. Kovalenko,Teplofiz. Vys. Temp. 23:395 (1985) [in Russian].

  33. Kraftmakher Y.(2000). Equilibrium Point Defects and Thermophysical Properties of Metals. World Scientific Publishing, Singapore

    Google Scholar 

  34. L. A. Cook, L. S. Castlemen, and W. E. Johnson,Naval Reactor Program, Contr. AT-11–1-GEN-14 (1950).

  35. W. A. Bostrom,WAPD-T-176 (1957).

  36. H. K. Adenstedt,Am. Soc. Metals Preprint 1 (1951).

  37. H. A. Saller and R. F. Dickerson,USAEC, BMI-908 (1954).

  38. R. G. Nelson and H. Kato,U.S. Bur. Mines, Rept. Invest. No. 5063 (1954).

  39. Rogers B.A., Atkins D.F. (1955). J. Met. 7:1034

    Google Scholar 

  40. V. E. Mikryukov,Vestnik Moskov Univ. 12:73 (1957) [in Russian].

    Google Scholar 

  41. Powell R.W., Tye R.P. (1961). J. Less-Common Met. 3:202

    Article  Google Scholar 

  42. McIntosh G.E., Hamilton D.C., Sibbitt W.L. (1954). Trans. ASME 76:407

    Google Scholar 

  43. E. R. Pollard Jr.,M.S. Thesis (Rensselear Polytech. Inst. Troy, New York, (1963).

  44. Murabayashi M., Tanaka S., Takahashi Y. (1975). J. Nucl. Sci. Technol. 12:661

    Article  Google Scholar 

  45. Takahashi Y., Yamawaki M., Yamamoto K. (1988). J. Nucl. Mater. 154:141

    Article  ADS  Google Scholar 

  46. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens,Thermophysical Properties of Matter, Vol. 1, Thermal Conductivity, Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum, New York, Washington, 1970), p. 461.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Milošević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milošević, N.D., Maglić, K.D. Thermophysical Properties of Solid Phase Zirconium at High Temperatures. Int J Thermophys 27, 1140–1159 (2006). https://doi.org/10.1007/s10765-006-0080-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0080-z

Keywords

Navigation