Skip to main content
Log in

Homogeneity in a Metal Wire under Melting

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Results of numerical simulations of the melting wave in a tungsten wire heated by a high-power nanosecond current pulse are presented. To take into account the hydrodynamic effects under melting, a semiempirical multiphase equation of state for tungsten is used. The structure of the melting wave at different parameters of the heating is studied, and a theoretical evaluation for the thickness of this wave, δm, is proposed. The homogeneity of the distribution of parameters over the wire can be expected in the case of δm >> a0, where a0 is the initial radius of the wire. The melting wave can be considered as a discontinuity of thermophysical properties of the solid and liquid phases at δm << a0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Gathers (1989) Rep. Progr. Phys 49 341 Occurrence Handle10.1088/0034-4885/49/4/001

    Article  Google Scholar 

  2. J. Frenkel (1946) Kinetic Theory of Liquids Oxford University Press New York

    Google Scholar 

  3. L. D. Landau E. M. Lifshits (1980) Statistical Physics Pergamon Press Oxford

    Google Scholar 

  4. P. V. Breslawskii V. I. Mazhukin A. A. Samokhin (1991) Dokl. Akad. Nauk. SSSR 320 1088

    Google Scholar 

  5. K. Sokolowskii-Tinten J. Bialkowski M. Boing A. Cavalleri A. Linde Particlevon der (1998) Phys. Rev. B 58 R11805 Occurrence Handle10.1103/PhysRevB.58.R11805

    Article  Google Scholar 

  6. H. S. Carslaw J. C. Jaeger (1959) Conduction of Heat in Solids Clarendon Press Oxford

    Google Scholar 

  7. S. I. Tkachenko N. I. Kuskova (1999) J. Phys. Condens. Mater 11 2223 Occurrence Handle10.1088/0953-8984/11/10/009

    Article  Google Scholar 

  8. S. I. Anisimov Ya. A. Imas G. S. Romanov Yu. V. Khodyko (1971) Action of High-Power Radiation on Metals National Technical Information Service Springfield, Virginia

    Google Scholar 

  9. I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, and P. R. Levashov, in Shock Compression of Condensed Matter—2001,M. D. Furnish, N. N. Thadhani, and Y. Horie, eds. (AIP, New York, 2002), pp. 111–114.

  10. H. Knoepfel (1970) Pulsed High Magnetic Fields North Holland Amsterdam

    Google Scholar 

  11. N. I. Kuskova S. I. Tkachenko S. V. Koval (1997) J. Phys. Condens. Matter 9 6175 Occurrence Handle10.1088/0953-8984/9/29/003

    Article  Google Scholar 

  12. P. B. Allen (1987) Phys. Rev. Lett. 59 1460 Occurrence Handle10.1103/PhysRevLett.59.1460 Occurrence Handle10035240

    Article  PubMed  Google Scholar 

  13. S. D. Brorson A. Kazeroonian J. S. Moodera D. W. Face T. K. Cheng E. P. Ippen M. S. Dresselhaus G. Dresselhaus (1990) Phys. Rev. Lett. 64 2172 Occurrence Handle10.1103/PhysRevLett.64.2172 Occurrence Handle10041602

    Article  PubMed  Google Scholar 

  14. V.L. Ginsburg V.P. Shabanskii (1955) Dokl. Akad. Nauk. SSSR 100 445

    Google Scholar 

  15. V. P. Shabanskii (1954) Zh. Eksp. Teor. Fiz. 27 142

    Google Scholar 

  16. K. V. Khishchenko S. I. Tkachenko P. R. Levashov I. V. Lomonosov V. S. Vorob’ev (2002) Int. J. Thermophys. 23 1359 Occurrence Handle10.1023/A:1019821126883

    Article  Google Scholar 

  17. A. V. Bushman V. E. Fortov (1987) Sov. Tech. Rev. B: Therm. Phys. 1 219

    Google Scholar 

  18. A. V. Bushman V. E. Fortov G. I. Kanel A. L. Ni (1993) Intense Dynamic Loading of Condensed Matter Taylor and Francis Washington

    Google Scholar 

  19. V. E. Fortov K. V. Khishchenko P. R. Levashov I. V. Lomonosov (1998) Nucl. Instr. Meth. Phys. Res. A 415 604 Occurrence Handle10.1016/S0168-9002(98)00405-7

    Article  Google Scholar 

  20. S. I. Tkachenko K. V. Khishchenko V. S. Vorob'ev P. R. Levashov I. V. Lomonosov V. E. Fortov (2001) High Temp. 39 674 Occurrence Handle10.1023/A:1012324925983

    Article  Google Scholar 

  21. A. A. Samarskii Yu. P. Popov (1980) Raznostnye Metody Resheniya Zadach Gazovoi Dinamiki Nauka Moscow

    Google Scholar 

  22. V. A. Gasilov S. I. Tkachenko (1989) Differentsial’nye Uravneniya 25 1200

    Google Scholar 

  23. S. I. Tkachenko (1995) Matematicheskoe Modelirovanie 7 IssueID1 3

    Google Scholar 

  24. S. I. Tkachenko, S. A. Pikuz, T. A. Shelkovenko, A. V. Agafonov, S. Yu. Guskov, G. V. Ivanenkov, A. R. Mingaleev, V. M. Romanova, and A. E. Ter-Oganesyan, 31st EPS Conference on Plasma Physics (London, 28 June–2 July 2004) ECA, Vol. 28G, P-2.025 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tkachenko.

Additional information

Paper presented at the Seventh International Workshop on Subsecond Thermophysics, October 6–8, 2004, Orléans, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachenko, S.I., Khishchenko, K.V. & Levashov, P.R. Homogeneity in a Metal Wire under Melting. Int J Thermophys 26, 1167–1179 (2005). https://doi.org/10.1007/s10765-005-6709-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-6709-5

Keywords

Navigation