Skip to main content
Log in

Aerodynamic Levitation and Inductive Heating – A New Concept for Structural Investigations of Undercooled Melts

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The combined application of containerless techniques with X-ray diffraction and absorption at synchrotron sources as well as neutron diffraction enables structural investigations of high-melting-point and/or corrosive liquids above the melting point and in the undercooled state. A variety of containerless techniques are available including electromagnetic and aerodynamic levitation. In the framework of a bilateral project, a new hybrid system combining aerodynamic levitation with inductive heating is being developed. Advantages and concept of the setup are discussed. Different Helmholtz coils and cylindrical coils were used to heat levitated, solid samples. Melting and stable levitation in the liquid state were achieved for aluminum. The general problem of deformation of liquid samples by electromagnetic fields is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Herlach R. F. Cochrane I. Egry H. J. Fecht A. L. Greer (1993) Int. Mater. Rev. 38 273

    Google Scholar 

  2. J.P. Coutures J.C. Rifflet D. Billard P. Coutures (1987) ESA SP-256 427

    Google Scholar 

  3. S. Ansell S. Krishnan J. K. R. Weber J. J. Felten P. C. Nordine M. Beno D. L. Price M. L. Saboungi (1997) Phys. Rev. Lett 78 67 Occurrence Handle10.1103/PhysRevLett.78.464

    Article  Google Scholar 

  4. S. Ansell S. Krishnan J. J. Felten D. L. Price (1998) J. Phys. Condens Matter. 10 L73 Occurrence Handle10.1088/0953-8984/10/3/005

    Article  Google Scholar 

  5. G. Jacobs I. Egry (1999) Phys. Rev. B 59 3961 Occurrence Handle10.1103/PhysRevB.59.3961

    Article  Google Scholar 

  6. I. Egry G. Jacobs D. Holland-Moritz (1999) J Non-Cryst Sol 250-252 820 Occurrence Handle10.1016/S0022-3093(99)00185-4

    Article  Google Scholar 

  7. P. C. Nordine R. M. Atkins (1982) Rev. Sci. Instrum. 53 1456 Occurrence Handle10.1063/1.1137196

    Article  Google Scholar 

  8. W. A. Oran L. H. Berge (1982) Rev. Sci. Instrum. 53 851 Occurrence Handle10.1063/1.1137067

    Article  Google Scholar 

  9. L. Hennet D. Thiaudière M. Gailhanou C. Landron J. P. Coutures D. L. Price (2002) Rev. Sci. Instrum. 73 125 Occurrence Handle10.1063/1.1426228

    Article  Google Scholar 

  10. L. Hennet D. Thiaudière C. Landron J.-F. Bérar M.-L. Saboungi G. Matzen D. L. Price (2003) NIM. B 207 447

    Google Scholar 

  11. F. Babin J. M. Gagné P. F. Paradis J. P. Coutures J. C. Rifflet (1995) Microgravity Sci. Technol. 7 283

    Google Scholar 

  12. P. F. Paradis F. Babin J. M. Gagné (1996) Rev. Sci. Instrum. 67 262 Occurrence Handle10.1063/1.1146581

    Article  Google Scholar 

  13. O. Muck, German patent 422004 (1923).

  14. E. C. Okress E. M. Wroughton C. Comenetz P. N. Brace J. C. K. Kelly (1952) J. Appl. Phys. 23 545 Occurrence Handle10.1063/1.1702249

    Article  Google Scholar 

  15. P. Rony, in Trans. Int. Vacuum Metallurgy Conf., M. A. Cocca, ed. (1964), p. 55.

  16. J. Priede, G. Gerbeth, A. Mikelsons, and Yu. Gelfgat, in Proc. 3rd Int. Symp. Electromagnetic Processing of Materials, (Nagoya, 2000), p. 352.

  17. A. Gagnoud J. Etay M. Garnier (1986) J. Mec. Theor. Appl. 5 911

    Google Scholar 

  18. P. S. Laplace (1845) Oeuvres 4 389

    Google Scholar 

  19. J. Piller R. Knauf P. Preu G. Lohöfer D. M. Herlach (1987) ESA SP-256 437

    Google Scholar 

  20. Y. Asakuma S. H. Hahn Y. Sakai T. Tsukuda M. Hozawa T. Matsumoto H. Fujii K. Nogi N. Imaishi (2000) Metall. Mater. Trans. B 31 327

    Google Scholar 

  21. H. Fujii T. Matsumoto K. Nogi (2000) Acta Mater. 48 2933 Occurrence Handle10.1016/S1359-6454(00)00086-0

    Article  Google Scholar 

  22. D. A. Winborne P. C. Nordine D. E. Rosner N. F. Marley (1976) Metall. Mater. Trans. B 7 711

    Google Scholar 

  23. J. Granier C. Potard (1978) ESA SP-256 421

    Google Scholar 

  24. P. H. Haumesser J. Bancillon M. Daniel M. Perez J. P. Garandet (2002) Rev. Sci. Instrum. 73 3275 Occurrence Handle10.1063/1.1499756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mathiak.

Additional information

Paper presented at the Seventh International Workshop on Subsecond Thermophysics, October 6–8, 2004, Orléans, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiak, G., Egry, I., Hennet, L. et al. Aerodynamic Levitation and Inductive Heating – A New Concept for Structural Investigations of Undercooled Melts. Int J Thermophys 26, 1151–1166 (2005). https://doi.org/10.1007/s10765-005-6708-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-6708-6

Keywords

Navigation