Skip to main content

Advertisement

Log in

Anaerobic Fungi in Gorilla (Gorilla gorilla gorilla) Feces: an Adaptation to a High-Fiber Diet?

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Many studies have demonstrated the importance of symbiotic microbial communities for the host with beneficial effects for nutrition, development, and the immune system. The majority of these studies have focused on bacteria residing in the gastrointestinal tract, while the fungal community has often been neglected. Gut anaerobic fungi of the class Neocallimastigomycetes are a vital part of the intestinal microbiome in many herbivorous animals and their exceptional abilities to degrade indigestible plant material means that they contribute significantly to fermentative processes in the enteric tract. Gorillas rely on a highly fibrous diet and depend on fermentative microorganisms to meet their daily energetic demands. To assess whether Neocallimastigomycetes occur in gorillas we analyzed 12 fecal samples from wild Western lowland gorillas (Gorilla gorilla gorilla) from Dzanga–Sangha Protected Areas, Central African Republic, and subjected potential anaerobic fungi sequences to phylogenetic analysis. The clone library contained ITS1 fragments that we related to 45 different fungi clones. Of these, 12 gastrointestinal fungi in gorillas are related to anaerobic fungi and our phylogenetic analyses support their assignment to the class Neocallimastigomycetes. As anaerobic fungi play a pivotal role in plant fiber degradation in the herbivore gut, gorillas might benefit from harboring these particular fungi with regard to their nutritional status. Future studies should investigate whether Neocallimastigomycetes are also found in other nonhuman primates with high fiber intake, which would also benefit from having such highly efficient fermentative microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abarenkov, K., Tedersoo, L., Nilsson, R. H., Vellak, K., Saar, I., et al. (2010). PlutoF: A web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics Online, 6, 189.

    Article  Google Scholar 

  • Ariyawansa, H. A., Hyde, K. D., Jayasiri, S. C., Buyck, B., Chethana, K. W. T., et al. (2015). Fungal diversity notes 111–252: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 75(1), 27–274.

  • Bauchop, T. (1981). The anaerobic fungi in rumen fibre digestion. Agriculture and Environment, 6(2), 339–348.

    Article  Google Scholar 

  • Callaghan, T. M., Podmirseg, S. M., Hohlweck, D., Edwards, J. E., Puniya, A. K., et al. (2015). Buwchfawromyces eastonii gen. Nov., sp. nov.: A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys, 9, 11–28.

    Article  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, C. A., & Chapman, L. J. (1990). Dietary variability in primate populations. Primates, 31(1), 121–128.

    Article  Google Scholar 

  • Cheng, Y. F., Edwards, J. E., Allison, G. G., Zhu, W.-Y., & Theodorou, M. K. (2009). Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresource Technology, 100(20), 4821–4828.

    Article  CAS  PubMed  Google Scholar 

  • Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. Journal of Morphology, 166(3), 337–386.

    Article  CAS  PubMed  Google Scholar 

  • Conklin-Brittain, N. L., Knott, C. D., & Wrangham, R. W. (2006). Energy intake by wild chimpanzees and orangutans: Methodological considerations and a preliminary comparison. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates (pp. 445–471). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dagar, S. S., Kumar, S., Griffith, G. W., Edwards, J. E., Callaghan, T. M., et al. (2015). A new anaerobic fungus (Oontomyces anksri gen. Nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology, 119(8), 731–737.

    Article  PubMed  Google Scholar 

  • Denman, S. E., Nicholson, M. J., Brookman, J. l., Theodorou, M. K., & McSweeney, C. S. (2008). Detection and monitoring of anaerobic rumen fungi using an ARISA method. Letters in Applied Microbiology, 47(6), 492–499.

    Article  CAS  PubMed  Google Scholar 

  • Doi, R. H., & Kosugi, A. (2004). Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology, 2(7), 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Doran-Sheehy, D., Mongo, P., Lodwick, J., & Conklin-Brittain, N. l. (2009). Male and female western gorilla diet: Preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies. American Journal of Physical Anthropology, 140(4), 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., et al. (2017). PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8, doi:https://doi.org/10.3389/fmicb.2017.01657

  • Edwards, J. E., Kingston-Smith, A. H., Jimenez, H. R., Huws, S. A., Skøt, K. P., et al. (2008). Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen: Initial colonization of forage by ruminal anaerobic fungi. FEMS Microbiology Ecology, 66(3), 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Espey, M. G. (2013). Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radical Biology and Medicine, 55, 130–140.

    Article  CAS  PubMed  Google Scholar 

  • Fliegerová, K., Mrázek, J., Hoffmann, K., Zábranská, J., & Voigt, K. (2010). Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiologica, 55(4), 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  PubMed  Google Scholar 

  • Frantzen, M. A. J., Silk, J. B., Ferguson, J. W. H., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  • Goudarzi, A. M., Chamani, M., Maheri-Sis, N., Afshar, M. A., & Salamatdoost-Nobar, R. (2015). Genetic diversity of gastrointestinal tract fungi in buffalo by molecular methods on the basis of polymerase chain reaction. Biological Forum, 7(1), 20–25.

    CAS  Google Scholar 

  • Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Hale, V. L., Tan, C. L., Knight, R., & Amato, K. R. (2015). Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. Journal of Microbiological Methods, 113, 16–26.

    Article  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hamad, I., Keita, M. B., Peeters, M., Delaporte, E., Raoult, D., & Bittar, F. (2014). Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Scientific Reports, 4, 6417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanafy, R. A., Elshahed, M. S., Liggenstoffer, A. S., Griffith, G. W., & Youssef, N. H. (2017). Pecoramyces ruminantium, gen. Nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia, 109(2), 231–243.

    Article  PubMed  Google Scholar 

  • Harrison, M. E., & Marshall, A. J. (2011). Strategies for the use of fallback foods in apes. International Journal of Primatology, 32(3), 531–565.

    Article  PubMed  Google Scholar 

  • Herrera, J., Poudel, R., & Khidir, H. H. (2011). Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. Microbial Ecology, 61(2), 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kišidayová, S., Váradyová, Z., Pristaš, P., Piknová, M., Nigutová, K., et al. (2009). Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. American Journal of Primatology, 71(7), 548–557.

    Article  CAS  PubMed  Google Scholar 

  • Kittelmann, S., Naylor, G. E., Koolaard, J. P., & Janssen, P. H. (2012). A proposed taxonomy of anaerobic fungi (class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One, 7(5), e36866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Dagar, S. S., Sirohi, S. K., Upadhyay, R. C., & Puniya, A. K. (2013). Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Annals of Microbiology, 63(2), 541–545.

    Article  CAS  Google Scholar 

  • Lee, S. S., Ha, J. K., & Cheng, K.-J. (2000). Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and Environmental Microbiology, 66(9), 3807–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., et al. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggenstoffer, A. S., Youssef, N. H., Couger, M. B., & Elshahed, M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. The ISME Journal, 4(10), 1225–1235.

    Article  PubMed  Google Scholar 

  • Mackie, R. I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integrative and Comparative Biology, 42(2), 319–326.

    Article  PubMed  Google Scholar 

  • Mackie, R. I., Rycyk, M., Ruemmler, R. L., Aminov, R. I., & Wikelski, M. (2004). Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos archipelago. Physiological and Biochemical Zoology, 77(1), 127–138.

    Article  PubMed  Google Scholar 

  • Masi, S. (2007). Seasonal influence on foraging strategies, activity and energy budgets of western lowland gorillas (Gorilla gorilla gorilla) in Bai Hokou, Central African Republic. PhD thesis, La Sapienza - Università di Roma.

  • Matheny, P. B., Curtis, J. M., Hofstetter, V., Aime, M. C., Moncalvo, J.-M., et al. (2006). Major clades of Agaricales: A multilocus phylogenetic overview. Mycologia, 98(6), 982–995.

    Article  PubMed  Google Scholar 

  • McFall-Ngai, M. J. (2002). Unseen forces: The influence of bacteria on animal development. Developmental Biology, 242(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Migaki, G., Schmidt, R. E., Toft, J. D., & Kaufmann, A. F. (1982). Mycotic infections of the alimentary tract of nonhuman primates: A review. Veterinary Pathology, 19(7 Suppl), 93–103.

    Article  PubMed  Google Scholar 

  • Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. The Journal of Nutrition, 118(9), 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  • Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, L. G., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovits, T., et al. (2012). Re-mind the gap! Insertion–deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of Fungi. PLoS One, 7(11), e49794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, M. J., McSweeney, C. S., Mackie, R. I., Brookman, J. L., & Theodorou, M. K. (2010). Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe, 16(2), 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 91(2), 249–262.

    CAS  Google Scholar 

  • Popovich, D. G., Jenkins, D. J., Kendall, C. W., Dierenfeld, E. S., Carroll, R. W., et al. (1997). The western lowland gorilla diet has implications for the health of humans and other hominoids. The Journal of Nutrition, 127(10), 2000–2005.

    Article  CAS  PubMed  Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Remis, M. J. (2003). Are gorillas vacuum cleaners of the forest floor? The roles of gorilla body size, habitat and food preferences on dietary flexibility and nutrition. In A. B. Taylor & M. L. Goldsmith (Eds.), Gorilla biology: A multidisciplinary perspective (pp. 385–404). Cambridge: Cambridge University Press.

    Google Scholar 

  • Remis, M. J., & Dierenfeld, E. S. (2004). Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. International Journal of Primatology, 25(4), 825–845.

    Article  Google Scholar 

  • Remis, M. J., Dierenfeld, E. S., Mowry, C. B., & Carroll, R. W. (2001). Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou. Central African Republic. International Journal of Primatology, 22(5), 807–836.

    Article  Google Scholar 

  • Robert, C., & Bernalier-Donadille, A. (2003). The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 46(1), 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Rothman, J. M., Dierenfeld, E. S., Hintz, H. F., & Pell, A. N. (2008). Nutritional quality of gorilla diets: Consequences of age, sex, and season. Oecologia, 155(1), 111–122.

    Article  PubMed  Google Scholar 

  • Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos, H. L., Frederickson, M. E., & Pierce, N. E. (2014). Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Molecular Ecology, 23(6), 1268–1283.

    Article  PubMed  Google Scholar 

  • Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904.

    Article  CAS  PubMed  Google Scholar 

  • Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., et al. (2016). Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems, 1(3), e00021-16, e00021, e00016.

  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678–687.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik, V., & Ovreas, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Tuckwell, D. S., Nicholson, M. J., McSweeney, C. S., Theodorou, M. K., & Brookman, J. L. (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology, 151(5), 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  • Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., & McGrew, W. C. (1991). Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lopé reserve, Gabon. Philosophical Transactions of the Royal Society of London B, 334(1270), 179–186.

    Article  CAS  Google Scholar 

  • Ungar, P. S. (2007). Dental functional morphology: The known, the unknown and the unknowable. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 39–55). Oxford: Oxford University Press.

    Google Scholar 

  • Wrangham, R. W., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 334(1270), 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19(6), 949–970.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the government of the Central African Republic as well as the Ministre de l’Education Nationale, de l’Alphabetisation, de l’Enseignement Superieur, et de la Recherche for granting permission to conduct our research within the Dzanga–Sangha Protected Areas, Central African Republic. We further thank the World Wildlife Fund and the Primate Habituation Project for administrative and logistical support on side. Last, we are very grateful to the associate editor and the two anonymous reviewers for their valuable comments. The project was supported by the Leakey Foundation (D. Schulz, K. J. Petrzelkova, K. Fliegerová), by the project CEITEC (Central European Institute of Technology, CZ.1·05/1·1·00/02·0068) from the European Regional Development Fund (D. Modry), by project CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE (K. Fliegerová), by institutional support of Institute of Vertebrate Biology, Czech Academy of Sciences (RVO: 68081766) (K. J. Petrzelkova) and cofinanced from the European Social Fund and the state budget of the Czech Republic (CZ.1·07/2·3·00/20·0300) (D. Schulz, I. Profousova-Psenkova, M. A. Qablan, D. Modry, K. J. Petrzelkova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen Schulz.

Additional information

Handling Editor: Jessica Rothman

Electronic supplementary material

Table S1

(XLSX 16 kb)

Table S2

(XLSX 13 kb)

Table S3

(TXT 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, D., Qablan, M.A., Profousova-Psenkova, I. et al. Anaerobic Fungi in Gorilla (Gorilla gorilla gorilla) Feces: an Adaptation to a High-Fiber Diet?. Int J Primatol 39, 567–580 (2018). https://doi.org/10.1007/s10764-018-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-018-0052-8

Keywords

Navigation