Skip to main content
Log in

Overview of Sensory Systems of Tarsius

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Tarsiers form the sister taxon to anthropoid primates, and their brains possess a mix of primitive and specialized features. We describe architectonically distinct subdivisions of the somatosensory, auditory, and visual systems for tarsiers, as well as nocturnal New World owl monkeys (Aotus) and strepsirhine galagos (Otolemur) for comparison. In general, the dorsal column nuclei, the ventroposterior nucleus, and primary somatosensory cortex are somewhat less distinctly differentiated in tarsiers, suggesting that the somatosensory system is less specialized for somatosensory processing. Although the inferior colliculus and the medial geniculate complex of the auditory system are architectonically similar across the 3 primates, the primary auditory cortex of tarsiers is more distinct, suggesting a greater role in auditory cortical processing. In the visual system, the differentiation of the superior colliculus is similar in all 3 primates, whereas the laminar pattern in the lateral geniculate nucleus and the subdivisions of the inferior pulvinar in tarsiers resemble those of anthropoid primates rather than strepsirhines, in agreement with the evidence that tarsiers form the sister clade for anthropoids. In addition, primary visual cortex has more distinct sublayers in tarsiers than other primates, attesting to its importance in this visual predator. Overall, tarsiers have well developed visual and auditory systems, and a less well developed somatosensory system, suggesting an enhanced reliance on the visual and auditory senses, rather than somatosensory sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Apkarian, A. V., & Hodge, C. J. (1989). Primate spinothalamic pathways: III Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288(3), 493–511.

    Article  CAS  PubMed  Google Scholar 

  • Benedek, G., Fischer-Szatmari, L., Kovacs, G., Perenyi, J., & Katoh, Y. Y. (1996). Visual, somatosensory and auditory modality properties along the feline suprageniculate-anterior ectosylvian sulcus/insular pathway. Progress in Brain Research, 112, 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo, P. E., Jiménez, C. E., Torres, C. V., & Avendaño, C. (2003). Quantitative stereological evaluation of the gracile and cuneate nuclei and their projection neurons in the rat. The Journal of Comparative Neurology, 463(4), 419–433.

    Article  PubMed  Google Scholar 

  • Bloch, J. I., Fisher, D. C., Gingerich, P. D., Gunnell, G. F., Simons, E. L., & Uhen, M. D. (1997). Cladistic analysis and anthropoid origins. Science, 278(5346), 2134–2136.

    Article  CAS  PubMed  Google Scholar 

  • Burton, H., & Jones, E. G. (1976). The posterior thalamic region and its cortical projection in New World and Old World monkeys. The Journal of Comparative Neurology, 168(2), 249–301.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M., Huerta, M. F., Cusick, C. G., & Kaas, J. H. (1986). Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the New World Callitrichid, Saguinus. The Journal of Comparative Neurology, 246(3), 409–426.

    Article  CAS  PubMed  Google Scholar 

  • Casagrande, V. A. (1994). A third visual pathway to primate V1. Trends in Neuroscience, 17, 305–310.

    Google Scholar 

  • Casagrande, V. A., & Kaas, J. H. (1994). The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In K. S. Rockland & A. Peters (Eds.), Cerebral cortex: Primary visual cortex in primates (pp. 201–259). New York: Plenum Press.

    Google Scholar 

  • Casagrande, V. A., Khaytin, I., & Boyd, J. (2007). The evolution of parallel visual pathways in the brains of primates. In J. H. Kaas, T. M. Preuss, T. H. Bullock, L. A. Krubitzer, J. L. Rubenstein & G. F. Striedter (Eds.), Evolution of nervous systems—A comprehensive reference (pp. 87–108). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Chacko, L. W. (1954). The lateral geniculate body of Tarsius spectrum. Journal of the Anatomical Society of India, 375—377.

  • Collins, C. E., Hendrickson, A., & Kaas, J. H. (2005). Overview of the visual system of Tarsius. The Anatomical Record A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 287(1), 1013–1025.

    Article  PubMed  Google Scholar 

  • Crompton, R. H. (1989). Mechanisms for speciation in Galago and Tarsius. Human Evolution, 4(2), 105–116.

    Article  Google Scholar 

  • Crompton, R. H., & Andau, P. M. (1986). Locomotion and habitat utilization in free-ranging Tarsius bancanus: A preliminary report. Primates, 27(3), 337–355.

    Article  Google Scholar 

  • de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. The Journal of Comparative Neurology, 496(1), 72–96.

    Article  PubMed  Google Scholar 

  • Diamond, I. T., Fitzpatrick, D., & Schmechel, D. (1993). Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  • Fleagle, J. G. (1999). Primate adaptation and evolution. San Diego: Academic Press.

    Google Scholar 

  • Florence, S. L., Wall, J. T., & Kaas, J. H. (1989). Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. The Journal of Comparative Neurology, 286(1), 48–70.

    Article  CAS  PubMed  Google Scholar 

  • Florence, S. L., Wall, J. T., & Kaas, J. H. (1991). Central projections from the skin of the hand in squirrel monkeys. The Journal of Comparative Neurology, 311(4), 563–578.

    Article  CAS  PubMed  Google Scholar 

  • Fries, W., & Distel, H. (1983). Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus. Proceedings of the Royal Society of London B Biological Sciences, 219(1214), 53–59.

    Article  CAS  Google Scholar 

  • Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurological Research, 1(2), 203–209.

    Google Scholar 

  • Gingold, S. I., Greenspan, J. D., & Apkarian, A. V. (1991). Anatomic evidence of nociceptive inputs to primary somatosensory cortex: Relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. The Journal of Comparative Neurology, 308(3), 467–490.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 400(2), 271–286.

    Article  CAS  PubMed  Google Scholar 

  • Hässler, R. (1966). Comparative anatomy of the central visual systems in day- and night-active primates. In R. Hassler & H. Stephen (Eds.) Stuttgart: Thieme.

  • Hendrickson, A. E. (1985). Dots, stripes and columns in monkey visual cortex. Trends in Neuroscience, 8, 404–410.

    Article  Google Scholar 

  • Hendrickson, A., Djajadi, H. R., Nakamura, L., Possin, D. E., & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. The Journal of Comparative Neurology, 424(4), 718–730.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, S. H. C., & Casagrande, V. A. (1996). A common pattern for a third visual channel in the primate LGN. Society for Neuroscience Abstracts, 22(631), 1605.

    Google Scholar 

  • Iyengar, S., Qi, H. X., Jain, N., & Kaas, J. H. (2007). Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of New World monkeys. The Journal of Comparative Neurology, 501(1), 95–120.

    Article  PubMed  Google Scholar 

  • Johnson, J. K., & Casagrande, V. A. (1995). Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). The Journal of Comparative Neurology, 356(2), 238–260.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G. (2007). Thalamus. Cambridge University Press.

  • Kaas, J. H. (1983). What, if anything, is SI? Organization of first somatosensory area of cortex. Physiological Reviews, 63(1), 206–231.

    CAS  PubMed  Google Scholar 

  • Kaas, J. H. (2000). Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1(1), 7–23.

    Article  Google Scholar 

  • Kaas, J. H. (2004). Somatosensory system. In G. Paxinos & J. K. Mai (Eds.), The human nervous system (pp. 1059–1092). New York: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Kaas, J. H. (2008). The somatosensory thalamus and associated pathways. In E. Gardner & J. H. Kaas (Eds.), The senses, somatosensation (pp. 117–141). London: Elsevier.

    Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2008). The functional neuroanatomy of the auditory cortex. In P. Dallos & D. Oertel (Eds.), The senses, audition (pp. 765–780). London: Elsevier Academic Press.

    Google Scholar 

  • Kaas, J. H., & Huerta, M. F. (1988). The subcortical visual system of primates. In H. P. Steklis (Ed.), Comparative primate biology (pp. 327–391). New York: Alan R. Liss.

    Google Scholar 

  • Kaas, J. H., & Lyon, D. C. (2001). Visual cortex organization in primates: Theories of V3 and adjoining visual areas. Progress in Brain Research, 134, 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., & Pons, T. P. (1988). The somatosensory system of primates. In H. D. Steklis & J. Erwin (Eds.), Comparative primate biology (pp. 421–468). New York: Alan R. Liss.

    Google Scholar 

  • Kaas, J. H., Guillery, R. W., & Allman, J. M. (1972). Some principles of organization in the dorsal lateral geniculate nucleus. Brain, Behavior and Evolution, 6(1), 253–299.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., Huerta, M. F., Weber, J. T., & Harting, J. K. (1978). Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. The Journal of Comparative Neurology, 182(3), 517–553.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., Nelson, R. J., Sur, M., Dykes, R. W., & Merzenich, M. M. (1984). The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. The Journal of Comparative Neurology, 226(1), 111–140.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., Hackett, T. A., & Tramo, M. J. (1999). Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9(2), 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Kay, R. F., Ross, C., & Williams, B. A. (1997). Anthropoid origins. Science, 275(5301), 797–804.

    Article  CAS  PubMed  Google Scholar 

  • Kolmer, W. (1930). Zur Kenntnis des Auges der Primaten. Anatomy and Embryology (Berlin), 93(6), 679–722.

    Article  Google Scholar 

  • Krubitzer, L. A., & Kaas, J. H. (1992). The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets. The Journal of Comparative Neurology, 319(1), 123–110.

    Article  CAS  PubMed  Google Scholar 

  • Le Gros Clark, W. E. (1930). The thalamus of Tarsius. Journal of Anatomy, 64(Pt 4), 371–414.

    Google Scholar 

  • Lin, C. S., Merzenich, M. M., Sur, M., & Kaas, J. H. (1979). Connections of areas 3b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey (Aotus trivirgatus). The Journal of Comparative Neurology, 185(2), 355–371.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon, J., & MacKinnon, K. (1980). The behavior of wild spectral tarsiers. International Journal of Primatology, 1(4), 361–379.

    Article  Google Scholar 

  • McGuinness, E. R., McDonald, C. T., Sereno, M., & Allman, J. M. (1986). Primates without blobs: The distribution of cytochrome oxidase activity in Tarsius, Hapalemur, and Cheirogaleus. Society for Neuroscience Abstracts, 12, 130.

    Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Sur, M., & Lin, C. S. (1978). Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). The Journal of Comparative Neurology, 181(1), 41–73.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. M., & Mufson, E. J. (1985). The insula of Reil in man and monkey. Architectonics, connectivity and function. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (pp. 179–226). New York: Plenum Press.

    Google Scholar 

  • Molinari, M., Dell’Anna, M. E., Rausell, E., Leggio, M. G., Hashikawa, T., & Jones, E. G. (1995). Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. The Journal of Comparative Neurology, 362(2), 171–194.

    Article  CAS  PubMed  Google Scholar 

  • Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 335(3), 437–459.

    Article  CAS  PubMed  Google Scholar 

  • Morest, D. G. (1965). The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. Journal of Anatomy, 99(Pt 3), 611–634.

    CAS  PubMed  Google Scholar 

  • Morest, D. K., & Winer, J. A. (1986). The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Advances in Anatomy, Embryology, and Cell Biology, 97, 1–94.

    CAS  PubMed  Google Scholar 

  • Niemitz, C. (2001). Tarsiers. In D. W. MacDonald (Ed.), The encyclopedia of mammals (p. 338). New York: Facts on File.

    Google Scholar 

  • Norden, J. J., & Kaas, J. H. (1978). The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. The Journal of Comparative Neurology, 182(4), 707–725.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, D. L., & Hall, W. C. (1978). The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections. The Journal of Comparative Neurology, 182(3), 423–458.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, J. C., & Haines, D. E. (1980a). Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers. The Journal of Comparative Neurology, 190(3), 533–558.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, J. C., & Haines, D. E. (1980b). Somatosensory thalamus of a prosimian primate (Galago senegalensis). II. An HRP and Golgi study of the ventral posterolateral nucleus (VPL). The Journal of Comparative Neurology, 190(3), 559–580.

    Article  CAS  PubMed  Google Scholar 

  • Perry, G. H., Martin, R. D., & Verrelli, B. C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution, 24(9), 1963–1970.

    Article  CAS  PubMed  Google Scholar 

  • Poggio, G. F., & Mountcastle, V. B. (1960). A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bulletin of Johns Hopkins Hospital, 106, 266–316.

    CAS  Google Scholar 

  • Polyak, S. (1957). The vertebrate visual system. Chicago: The University of Chicago Press.

    Google Scholar 

  • Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. The Journal of Comparative Neurology, 310(4), 475–506.

    Article  CAS  PubMed  Google Scholar 

  • Preuss, T. M., & Kaas, J. H. (1996). Cytochrome oxidase “blobs” and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain, Behavior and Evolution, 47(2), 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Qi, H. X., & Kaas, J. H. (2006). Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates. The Journal of Comparative Neurology, 499(2), 183–217.

    Article  PubMed  Google Scholar 

  • Rosa, M. G. P., Pettigrew, J. D., & Cooper, H. M. (1996). Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. Brain Behavior and Evolution, 48(3), 121–156.

    Article  CAS  Google Scholar 

  • Ross, C., & Kay, R. F. (2004). Anthropoid origins: New visions. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Schmitz, J., Ohme, M., & Zischler, H. (2002). The complete mitochondrial sequence of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Molecular Biology and Evolution, 19(4), 544–553.

    CAS  PubMed  Google Scholar 

  • Simmons, R. M. T. (1982). The morphology of the diencephalon in the Prosimii. III. Tarsioidea. Journal für Hirnforschung, 23(2), 149–173.

    CAS  PubMed  Google Scholar 

  • Smith, G. E. (1924). The evolution of man. Oxford: Oxford University Press.

    Google Scholar 

  • Spatz, W. B. (1975). An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Research, 92(3), 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Stephan, H. (1969). Quantitative investigations on visual structures in primate brains. Proceedings of the 2nd International Congress on Primatology, 3, 34–42.

  • Stephan, H. (1984). Morphology of the brain in Tarsius. Biology of Tarsiers, 319–344.

  • Stepniewska, I. (2004). The pulvinar complex. In J. H. Kaas & C. E. Collins (Eds.), The primate visual system (pp. 53–80). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Stepniewska, I., & Kaas, J. H. (1997). Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Vision Neuroscience, 14(6), 1043–1060.

    Article  CAS  Google Scholar 

  • Stepniewska, I., Qi, H. X., & Kaas, J. H. (2000). Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vision Neuroscience, 17(4), 529–549.

    Article  CAS  Google Scholar 

  • Strata, F., Coq, J. O., & Kaas, J. H. (2003). The chemo- and somatotopic architecture of the Galago cuneate and gracile nuclei. Neuroscience, 116(3), 831–850.

    Article  CAS  PubMed  Google Scholar 

  • Sur, M., Nelson, R. J., & Kaas, J. H. (1980). Representation of the body surface in somatic koniocortex in the prosimian Galago. The Journal of Comparative Neurology, 189(2), 381–402.

    Article  CAS  PubMed  Google Scholar 

  • Sur, M., Weller, R. E., & Kaas, J. H. (1981). Physiological and anatomical evidence for a discontinuous representation of the trunk in S-I of tree shrews. The Journal of Comparative Neurology, 201(1), 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Tilney, F. (1927). The brain stem of Tarsius. A critical comparison with other Primates. The Journal of Comparative Neurology, 43(3), 371–432.

    Article  Google Scholar 

  • von Bonin, G. (1951). The isocortex of Tarsius. The Journal of Comparative Neurology, 95(3), 387–428.

    Article  Google Scholar 

  • Walls, G. L. (1953). The lateral geniculate nucleus and visual histophysiology. British Journal of Ophthalmology, 38(3), 1–93.

    Google Scholar 

  • Wedeen, V. J., Wang, R., Schmahmann, J. D., Takahashi, E., Kaas, J. H., Hagmann, P., et al. (2009). Diffusion spectrum MRI in three mammals – rat, monkey and human. Frontiers in Neuroscience, 3(1), 74–77.

    Google Scholar 

  • Welker, W. I. (1973). Principles of organization of the ventrobasal complex in mammals. Brain, Behavior and Evolution, 7(4), 253–336.

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger, M., & Miles, T. S. (1982). Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiological Reviews, 62(4), 1234–1270.

    CAS  PubMed  Google Scholar 

  • Winer, J. A., Diamond, I. T., & Raczkowski, D. (1977). Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. The Journal of Comparative Neurology, 176(3), 387–417.

    Article  CAS  PubMed  Google Scholar 

  • Wong, P., & Kaas, J. H. (2009). An architectonic study of the neocortex of the short-tailed opossum (Monodelphis domestica). Brain, Behavior and Evolution, 73(3), 206–228.

    Article  PubMed  Google Scholar 

  • Wong, P., Collins, C. E., Baldwin, M. K. L., & Kaas, J. H. (2009). Cortical connections of the visual pulvinar complex in prosimian galagos (Otolemur garnetti). The Journal of Comparative Neurology, 517(4), 493–511.

    Article  PubMed  Google Scholar 

  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 11–28.

    Google Scholar 

  • Woollard, H. H. (1925). The cortical lamination of Tarsius. Journal of Anatomy, 60(Pt 1), 86–105.

    CAS  PubMed  Google Scholar 

  • Woollard, H. H. (1926). Notes on the retina and lateral geniculate body in Tupaia, Tarsius, Nycticebus and Hapale. Brain, 49(1), 77–105.

    Article  Google Scholar 

  • Wu, C. W., & Kaas, J. H. (2003). Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. The Journal of Comparative Neurology, 457(3), 263–292.

    Article  PubMed  Google Scholar 

  • Yoder, A. D. (2003). The phylogenetic position of the genus Tarsius: Whose side are you on? In P. C. Wright, E. L. Simons & S. Gursky (Eds.), Tarsiers past, present, and future (pp. 161–175). New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Zhao, H., Rossiter, S. J., Teeling, E. C., Li, C., Cotton, J. A., & Zhang, S. (2009). The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8980–8985.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anita Hendrickson for providing 3 adult brains of Tarsius spectrum for histological study. The fourth brain was from the histological collection of Dr. J. M. Petras. We thank the reviewers for helpful comments on the manuscript. Funds to support this research were from Vanderbilt University to J. H. Kaas and a grant from the National Eye Institute, EY 02686 to J. H. Kaas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon H. Kaas.

Appendix

Appendix

Abbreviations

A1

Primary auditory area

CB

Calbindin

CN

Cuneate nucleus

CO

Cytochrome oxidase

GN

Gracile nucleus

IC

Inferior colliculus

K

Koniocellular

LGN

Lateral geniculate nucleus

M

Magnocellular

MGC

Medial geniculate complex

MGd

Medial geniculate dorsal nucleus

MGm

Medial geniculate magnocellular nucleus

MGv

Medial geniculate ventral nucleus

MT

Middle temporal visual area

P

Parvocellular

PI

Inferior pulvinar

PIcl

Inferior pulvinar central lateral subdivision

PIcm

Inferior pulvinar central medal subdivision

PIm

Inferior pulvinar medial subdivision

PIp

Inferior pulvinar posterior subdivision

Pv

Parietal ventral area

PV

Parvalbumin

R

Rostral auditory area

S1

Primary somatosensory cortex (Area 3b)

S2

Secondary somatosensory cortex

SC

Superior colliculus

SG

Suprageniculate nucleus

TBS

Tris buffered saline

V1

Primary visual area

V2

Secondary visual area

VP

Ventroposterior nucleus

VPI

Ventroposterior inferior nucleus

VPL

Ventroposterior lateral nucleus

VPM

Ventroposterior medial nucleus

VPS

Ventroposterior superior nucleus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, P., Collins, C.E. & Kaas, J.H. Overview of Sensory Systems of Tarsius . Int J Primatol 31, 1002–1031 (2010). https://doi.org/10.1007/s10764-009-9388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-009-9388-4

Keywords

Navigation