Skip to main content

Advertisement

Log in

Teachers’ Use of Focus Questions in German Biology Classrooms: a Video-based Naturalistic Study

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2017

This article has been updated

Abstract

This study investigated the effects of teachers’ use of focus questions on students’ knowledge structures and classroom teaching-learning process by re-analyzing selected data from a quasi-experimental pre-post video study (Wadouh, 2007). Focus questions are content-related anchoring questions highlighting the key content taught in individual lessons (Forbes & Davis, 2010). In Wadouh’ study, students answered a knowledge test before and after the lesson on “blood and the circulatory system” and one lesson per teacher was videotaped to investigate teaching practices in grade 9 biology classrooms. Students also completed a post-unit concept mapping exercise and a motivation-interest questionnaire. In this study, 30 lesson videos selected from 47 were re-analyzed for teachers’ use of focus questions—no focus questions, non-specific or simple focus questions, and specific and challenging focus questions. Individual students’ scores in the concept mapping exercise were aggregated as students’ topic-related knowledge structure. Multilevel analyses revealed a significant positive effect of teachers’ use of specific and challenging focus questions on students’ topic-related knowledge structure. Furthermore, a comparative case analysis of the classroom teaching-learning process was conducted in four lessons where teachers used specific and challenging focus questions in two of the lessons and non-specific or simple focus questions in the other two lessons. The findings indicate that specific and challenging focus questions anchored lessons on students’ co-construction of scientific explanations by activating their pre-instructional ideas, whereas non-specific or simple focus questions anchored lessons on their accumulation of canonical scientific knowledge. This study’s limitations and implications for teacher education reform are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 18 September 2017

    An erratum to this article has been published.

References

  • Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51(5), 267-272.

    Article  Google Scholar 

  • Ausubel, D. P. (2012). The acquisition and retention of knowledge: A cognitive view. Dordrecht, The Netherlands: Springer Science and Business Media.

  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669.

    Article  Google Scholar 

  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7–75). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091.

    Article  Google Scholar 

  • Field, A. P. (2009). Discovering statistics using SPSS: (and sex and drugs and rock ‘n’ roll). Los Angeles [i.e., Thousand Oaks, Calif.]: SAGE Publications.

  • Fischer, H. E., Labudde, P., Neumann, K., & Viiri, J. (Eds.). (2014). Quality of instruction in physics: Comparing Finland, Switzerland and Germany. Münster, Germany: Waxmann Verlag.

  • Forbes, C. T., & Davis, E. A. (2010). Beginning elementary teachers’ beliefs about the use of anchoring questions in science: A longitudinal study. Science Education, 94(2), 365–387.

  • Fraser, B. J., Walberg, H. J., Welch, W. W., & Hattie, J. A. (1987). Syntheses of educational productivity research. International Journal of Educational Research, 11, 145–252.

    Article  Google Scholar 

  • Friege, G., & Lind, G. (2000). Begriffsnetze und Expertise [Conceptual networks and expertise]. In H. Fischler (Ed.), Concept mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie [Concept mapping in research projects on physics and chemistry didactics] (pp. 147–178). Berlin, Germany: Logos-Verlag.

  • Gruber, H., & Mandl, H. (1996). Das Entstehen von expertise [Development of expertise]. In J. Hoffmann & W. Kintsch (Eds.), Lernen. Enzyklopädie der Psychologie [Learning encyclopedia of psychology] (pp. 583–615). Göttingen, Germany: Hogrefe.

  • Guarte, J. M., & Barrios, E. B. (2006). Estimation under purposive sampling. Communications in Statistics: Simulation and Computation®, 35(2), 277–284.

    Article  Google Scholar 

  • Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing coherent conceptual storylines: Two elementary challenges. Journal of Science Teacher Education, 27(4), 393–414.

    Article  Google Scholar 

  • Heck, R. H., Thomas, S. L., & Tabata, L. N. (2010). Multilevel and longitudinal modeling with IBM-SPSS. New York, NY: Routledge.

  • Hugener, I., Pauli, C., Reusser, K., Lipowsky, F., Rakoczy, K., & Klieme, E. (2009). Teaching patterns and learning quality in Swiss and German mathematics lessons. Learning and Instruction, 19(1), 66–78.

    Article  Google Scholar 

  • Jatzwauk, P. (2007). Aufgaben im Biologieunterricht: eine Analyse der Merkmale und des didaktisch-methodischen Einsatzes von Aufgaben im Biologieunterricht [Tasks in biology-teaching: An analysis of tasks used in biology lessons]. Berlin, Germany: Logos-Verlag.

  • Johnson, M. A., & Lawson, A. E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes? Journal of Research in Science Teaching, 35(1), 89–103.

    Article  Google Scholar 

  • Joyce, B., Weil, M., & Calhoun, E. (2003). Models of teaching. Englewood Cliffs, NJ: Prentice-Hall.

  • Kelly, G., & Crawford, T. (1997). An ethnographic investigation of the discourse processes in school science. Science Education, 81, 533–559.

    Article  Google Scholar 

  • Krajcik, J., & Mamlok-Naaman, R. (2006). Using driving questions to motivate and sustain students’ interest in learning science. In K. Tobin (Ed.), Teaching and learning science: An encyclopedia (pp. 317–327). Westport, CT: Greenwood Publishing Group.

  • Kinchin, I. M. (2011). Visualising knowledge structures in biology: Discipline, curriculum and student understanding. Journal of Biological Education, 45(4), 183–189.

    Article  Google Scholar 

  • Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning, and development. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 3–25). Hillsdale, MI: Lawrence Erlbaum Associates, Inc..

  • Krapp, A. (1999). Interest, motivation and learning: An educational-psychological perspective. European Journal of Psychology of Education, 14(1), 23–40.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex.

  • Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19(6), 527–537.

    Article  Google Scholar 

  • Mayer, R. E. (2002). Rote versus meaningful learning. Theory Into Practice, 41(4), 226–232.

    Article  Google Scholar 

  • Mayer, R.E. (2003). Learning and instruction. Upper Saddle River, NJ: Merrill Prentice Hall.

  • McTighe, J., & Wiggins, G. (2013). Essential questions: Opening doors to student understanding. Alexandria, VA: ASCD.

  • Morrison, J. A., & Lederman, N. G. (2003). Science teachers’ diagnosis of understanding of students’ preconceptions. Science Education, 87, 849–867.

    Article  Google Scholar 

  • Mutai, D. K., Changeiywo, J. M., & Okere, M. I. O. (2015). Effects of Gowin’s Vee heuristic teaching strategy on secondary school students’ conceptual understanding and metacognition in the topic of moments in physics, in Uasin Gishu County, Kenya. Journal of Education and Practice, 5(29), 193–205.

    Google Scholar 

  • Nawani, J., Rixius, J., & Neuhaus, B. J. (2016). Influence of using challenging tasks in biology classrooms on students’ cognitive knowledge structure: an empirical video study. International Journal of Science Education, 38(12), 1882–1903.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept maps and Vee diagrams: Two metacognitive tools to facilitate meaningful learning. Instructional Science, 19(1), 29–52.

    Article  Google Scholar 

  • Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548–571.

    Article  Google Scholar 

  • Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.

    Article  Google Scholar 

  • Praetorius, A. K., Pauli, C., Reusser, K., Rakoczy, K., & Klieme, E. (2014). One lesson is all you need? Stability of instructional quality across lessons. Learning and Instruction, 31, 2–12.

    Article  Google Scholar 

  • Prenzel, M. (1988). Die Wirkungsweise von Interesse. Ein Erklärungsversuch aus pädagogischer Sicht [Mode of operationalizing interest. An explanation from pedagogical perspective]. Opladen, Germany: Westdeutscher Verlag.

  • Reiser, B. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273–304.

    Article  Google Scholar 

  • Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the Next Generation Science Standards. White Paper presented for K12 center at ETS (Educational Testing Service) Invitational Research Symposium on Science Assessment, Washington, DC.

  • Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T., . . . Stigler, J. (2006). Teaching science in five countries: Results from the TIMSS 1999 video study. Statistical analysis report. (NCES 2006-011). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

  • Ruiz-Primo, M. A. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. REDIE: Revista Electrónica de Investigación Educativa, 2(1), 29–52.

  • Schiefele, U., Krapp, A., & Winteler, A. (1992). Interest as a predictor of academic achievement: A meta-analysis of research. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 183–212). Hillsdale, MI: Erlbaum.

  • Schönborn, K. J., & Bögeholz, S. (2009). Knowledge transfer in biology and translation across external representations: Experts’ views and challenges for learning. International Journal of Science and Mathematics Education, 7(5), 931–955.

    Article  Google Scholar 

  • Schwille, K., Numedahl, P., Kruse, R., Hvidsten, C., & Gardner, A. (2011). Videocase-based lesson analysis of science teaching to support teacher learning. Orlando, FL: Pre-conference workshop at National Association for Research in Science Teaching (NARST).

  • Seidel, T., & Shavelson, R. J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Stoddart, T., Abrams, R., Gasper, E., & Canaday, D. (2000). Concept maps as assessment in science inquiry learning: A report of methodology. International Journal of Science Education, 22(12), 1221–1246.

    Article  Google Scholar 

  • Trowbridge, J. E., & Wandersee, J. H. (1994). Identifying critical junctures in learning in a college course on evolution. Journal of Research in Science Teaching, 31(5), 459–473.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57(1), 51–67.

    Article  Google Scholar 

  • Wadouh, J. (2007). Vernetzung und kumulatives Lernen im Biologieunterricht der Gymnasialklasse 9 [Interconnectedness and cumulative learning in biology teaching of grade 9] (Doctoral dissertation). University of Duisburg-Essen, Germany. Retrieved from http://duepublico.uni-duisburg-essen.de.

  • Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. (2014). The effect of knowledge linking levels in biology lesson upon students' knowledge structure. International Journal of Science & Mathematics Education, 12(1).

    Article  Google Scholar 

  • Wild, E., Hofer, M., & Pekrun, R. (2001). Psychologie des Lerners: Lernmotivation [Psychology of the learner: Learning motivation]. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie [Educational Psychology] (pp. 218–241). Weinheim, Germany: Beltz Psychologische Verlags Union.

  • Wirtz, M. A., & Caspar, F. (2002). Beurteilerübereinstimmung und beurteilerreliabilität [Inter-rater reliability and inter-rater agreement]. Göttingen, Germany: Hogrefe.

  • Wüsten, S. (2010). Allgemeine und fachspezifische Merkmale der Unterrichtsqualität im Fach Biologie: Eine Video-und Interventionsstudie. [General and subject-specific criteria of teaching quality in biology: A video and intervention study]. Berlin, Germany: Logos – Verlag.

  • Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept-mapping techniques: Implications for scoring, interpretation, and use. Journal of Research in Science Teaching, 42(2), 166–184.

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this article is part of the video study “Teacher Communication in Biology Classrooms” funded by the Federal Ministry of Education and Research (01JG1074). The research was conducted in association with the Elite Network of Bavaria (project number: K-GS-2012-209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigna Nawani.

Additional information

The original version of this article was revised: Lena Kotzebue, Julia Rixius, Michael Graml and Birgit J. Neuhaus were not included as authors of this article in the initial online publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawani, J., Kotzebue, L., Rixius, J. et al. Teachers’ Use of Focus Questions in German Biology Classrooms: a Video-based Naturalistic Study. Int J of Sci and Math Educ 16, 1431–1451 (2018). https://doi.org/10.1007/s10763-017-9837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-017-9837-z

Keywords

Navigation