Skip to main content
Log in

Reproducibility of Terahertz Peaks in a Frozen Aqueous Solution of 5-Methylcytidine

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Abnormally high level of methylation in the epigenome is a biomarker for various forms of cancer. It has been reported that a methylated nucleoside, 5-methylcytidine, when dissolved in water and then frozen, has a resonance absorption peak around 1.6 THz, which could allow for the determination of the degree of methylation using terahertz spectroscopy. This study attempts to replicate the experiment and reproduce this observation independently. Samples of ice were measured at 173 K to establish a baseline and frozen solutions of 5-methylcytidine were measured. Normal (physiological) 0.15 M saline, which is known to have a peak at 1.6 THz, was also measured. The use of a Gaussian function to fit a baseline to the broad (0.2 to 2.5 THz) absorption spectra consistently produced a peak residual around 1.6 THz for all three types of samples, with saline having the highest peak followed by ice. The peak for 5-methylcytidine was found to be smaller than that for ice, which contradicts previously published findings and illustrates the strong dependence of the result on the method of baseline fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Auclair and M. Weber, Biochimie 94, 2202 (2012).

  2. B. Jin and K. D. Robertson, “DNA methyltransferases, DNA damage repair, and cancer”, in Epigenetic alterations in oncogenesis, edited by A. R. Karpf (Springer New York, New York, NY, 2013), pp. 3–29.

  3. A. M. Deaton and A. Bird, Genes & development 25, 1010 (2011).

  4. W. H. Lee, R. A. Morton, J. I. Epstein, J. D. Brooks, P. A. Campbell, G. S. Bova, W. S. Hsieh, W. B. Isaacs, and W. G. Nelson, Proceedings of the National Academy of Sciences 91, 11733 (1994).

  5. E. Pickwell and V. P. Wallace, Journal of Physics D: Applied Physics 39, R301 (2006).

  6. A. D’Arco, M. Di Fabrizio, V. Dolci, M. Petrarca, and S. Lupi, Condensed Matter 5, 25 (2020).

  7. O. A. Smolyanskaya, N. V. Chernomyrdin, A. A. Konovko, K. I. Zaytsev, I. A. Ozheredov, O. P. Cherkasova, M. M. Nazarov, J. P. Guillet, S. A. Kozlov, Y. V. Kistenev, J. L. Coutaz, P. Mounaix, V. L. Vaks, J. H. Son, H. Cheon, V. P. Wallace, Y. Feldman, I. Popov, A. N. Yaroslavsky, A. P. Shkurinov, and V. V. Tuchin, Progress in Quantum Electronics 62, 1 (2018).

  8. E. P. J. Parrott, Y. Sun, and E. Pickwell-MacPherson, Journal of Molecular Structure 1006, 66 (2011).

  9. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, Journal of Pharmaceutical Sciences 94, 837 (2005).

  10. P. F. Taday, I. V. Bradley, D. D. Arnone, and M. Pepper, Journal of Pharmaceutical Sciences 92, 831 (2003).

  11. M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, Chemical Physics Letters 332, 389 (2000).

  12. P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, Journal of Biological Physics 29, 117 (2003).

  13. M. T. Ruggiero, Journal of Infrared, Millimeter, and Terahertz Waves, https://doi.org/10.1007/s10762-019-00648-3 (2020).

  14. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, Applied Physics Letters 90, 061908 (2007).

  15. S. Fan, M. T. Ruggiero, Z. Song, Z. Qian, and V. P. Wallace, Chemical Communications 55, 3670 (2019).

  16. J. Sibik, K. Löbmann, T. Rades, and J. A. Zeitler, Molecular Pharmaceutics 12, 3062 (2015).

  17. O. P. Cherkasova, M. M. Nazarov, M. Konnikova, and A. P. Shkurinov, Journal of Infrared, Millimeter, and Terahertz Waves 41, 1057 (2020).

  18. X. Jing, W. P. Kevin, and S. J. Allen, The Journal of Chemical Physics 124, 036101 (2006).

  19. J. T. Kindt and C. A. Schmuttenmaer, The Journal of Physical Chemistry 100, 10373 (1996).

  20. G. Png, R. Flook, B.-H. Ng, and D. Abbott, Electronics Letters 45, 343 (2009).

  21. H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, Applied Physics Letters 94, 123901 (2009).

  22. Y. He, B. S. Y. Ung, E. P. J. Parrott, A. T. Ahuja, and E. Pickwell-MacPherson, Biomedical optics express 7, 4711 (2016).

  23. R. Rungsawang, Y. Ueno, and K. Ajito, Detecting a sodium chloride ion pair in ice using terahertz time-domain spectroscopy, Vol. 23 (2007), pp. 917–20.

  24. L. Chen, G. Ren, L. Liu, P. Guo, E. Wang, L. Zhou, Z. Zhu, J. Zhang, B. Yang, W. Zhang, Y. Li, W. Zhang, Y. Gao, H. Zhao, and J. Han, The Journal of Physical Chemistry Letters 11, 7146 (2020).

  25. P. Banks, L. burgess, and M. Ruggiero, https://doi.org/10.26434/chemrxiv.13473063.v1 (2020).

  26. H. Cheon, H.-J. Yang, S.-H. Lee, Y. Kim, and J.-H. Son, Scientific Reports 6, https://doi.org/10.1038/srep37103 (2016).

  27. J. E. Bertie, H. J. Labbé, and E. Whalley, The Journal of Chemical Physics 50, 4501 (1969).

  28. K. Takeya, T. Fukui, R. Takahashi, and K. Kawase, Journal of Optics 16, 094005 (2014).

  29. T. Matsuoka, S. Fujita, and S. Mae, Journal of Applied Physics 80, 5884 (1996).

  30. G. P. Johari and S. J. Jones, Nature 263, 672 (1976).

  31. J. E. Bertie and E. Whalley, The Journal of Chemical Physics 46, 1271 (1967).

  32. Y. Zhou, Y. Kong, W. Fan, T. Tao, Q. Xiao, N. Li, and X. Zhu, Biomedicine & Pharmacotherapy 131, 110731 (2020).

  33. C.-H. Shen, “Chapter 12 - genome and transcriptome analysis”, in Diagnostic molecular biology, edited by C.-H. Shen (Academic Press, 2019), pp. 303–329.

  34. S.-Y. Jeong, H. Cheon, D. Lee, and J.-H. Son, Optics Express 28, 3854 (2020).

  35. K. Ajito, Y. Ueno, J.-Y. Kim, and T. Sumikama, Journal of the American Chemical Society 140, 13793 (2018).

  36. W. Withayachumnankul, B. M. Fischer, and D. Abbott, Optics Express 16, 7382 (2008).

  37. M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, International Journal of Infrared and Millimeter Waves 27, 505 (2006).

  38. L. Duvillaret, F. Garet, and J. L. Coutaz, IEEE Journal of Selected Topics in Quantum Electronics 2, 739 (1996).

  39. V. Thomsen, D. Schatzlein, and D. Mercuro, Spectroscopy 18, 112 (2003).

  40. Y. C. Shen, P. F. Taday, and M. Pepper, Applied Physics Letters 92, 051103 (2008).

Download references

Acknowledgements

We thank Prof Charlie Bond and Dr Michael Ruggiero for useful discussions, and Nicholas Lawler for feedback on the manuscript.

Funding

This work was supported by the Australian Research Council via a Future Fellowship award to Prof Wallace (project number FT180100683) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Heng Tao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y.H., Hodgetts, S.I., Harvey, A.R. et al. Reproducibility of Terahertz Peaks in a Frozen Aqueous Solution of 5-Methylcytidine. J Infrared Milli Terahz Waves 42, 588–606 (2021). https://doi.org/10.1007/s10762-021-00793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00793-8

Keywords

Navigation