Skip to main content
Log in

Excitation of Electromagnetically Induced Transparency Effect in Asymmetrical Planar Terahertz Toroidal Dipole Metasurfaces

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We proposed and fabricated J-shaped planar structure metasurfaces to achieve excitation of dual-frequency toroidal dipole resonances simultaneously, which results in electromagnetically induced transparency effect in the terahertz band. The mutual coupling of two asymmetric J-shaped metal rings in the metasurface units excites low-frequency and high-frequency toroidal dipole resonances, and a transparent window was formed. The fitted curves based on the Fano resonance model have a good consistency with the simulated transmission spectrum of the metasurfaces, which explains this coupling effect deeply. The resonant mode and radiant mechanism were revealed by the analysis of the electromagnetic field distribution and the numerical calculation of the multipole moment. Furthermore, the toroidal dipole resonant response can be adjusted by the structural parameter, indicating the sensing characteristics of the metasurfaces. The simple and flexible planar toroidal dipole metasurfaces with electromagnetically induced transparency effect provide more possibilities for the development and application of terahertz functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101, 144105 (2012).

    Article  Google Scholar 

  2. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).

    Article  MathSciNet  Google Scholar 

  3. D. R. Smith,J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).

    Article  Google Scholar 

  4. Ranjan Singh, Ibraheem A. I. Al-Naib, Yuping Yang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry”, Appl. Phys. Lett. 99, 201107 (2011)

    Article  Google Scholar 

  5. N. I. Zheludev, Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917-924 (2012).

    Article  Google Scholar 

  6. Z. Guo, H. Jiang, Y. Li, H. Chen, G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26, 627 (2017).

    Article  Google Scholar 

  7. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

    Article  Google Scholar 

  8. M. Gupta, V. Savinov, N. Xu, L. Cong, C. Dayal, S. Wang, W. Zhang, N. I. Zheludev, R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28, 8206 (2016).

    Article  Google Scholar 

  9. S. Han, L. Cong, F. Gao,R. Singh, H.Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528, 352-357 (2016).

    Article  Google Scholar 

  10. G. Dayal, X. Y. Chin, C. Soci, R. Singh, “High-Q Whispering-Gallery-Mode-Based Plasmonic Fano Resonances in Coupled Metallic Metasurfaces at Near Infrared Frequencies,” Adv. Opt. Mater. 4, 1295-1301 (2016).

    Article  Google Scholar 

  11. Y. Francescato, V. Giannini, S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6, 1830-1838 (2012).

    Article  Google Scholar 

  12. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312-6319 (2011).

    Article  Google Scholar 

  13. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159 (2013).

    Article  Google Scholar 

  14. X. Xiao, B. Zhou, X. Wang, J. He, B. Hou, Y. Zhang, W. Wen, “An Analog of electrically induced transparency via surface delocalized modes,” Sci. Rep. 5, 12251 (2015).

    Article  Google Scholar 

  15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

    Article  Google Scholar 

  16. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).

    Article  Google Scholar 

  17. R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

    Article  Google Scholar 

  18. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29, 1603355 (2017).

    Article  Google Scholar 

  19. B. Luk Yanchul, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707-715 (2010).

    Article  Google Scholar 

  20. A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys. 82, 2257-2298 (2010).

    Article  Google Scholar 

  21. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16, 11647-11659 (2008).

    Article  Google Scholar 

  22. L. Zhu, L. Dong, J. Guo, F. Meng, X. He, C. Zhao, Q. Wu, “A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles,” RSC Adv. 7, 55897-55904 (2017).

    Article  Google Scholar 

  23. W. Yu, H. Meng, Z. Chen, X. Li, X. Zhang, F. Wang, Z. Wei, C. Tan, X. Huang, S. Li, “The bright–bright and bright–dark mode coupling-based planar metamaterial for plasmonic EIT-like effect,” Opt. Commun. 414, 29-33 (2018).

    Article  Google Scholar 

  24. M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D: Appl. Phys. 51, 174005 (2018).

    Article  Google Scholar 

  25. D. W. Watson, S. D. Jenkins, J. Ruostekoski, “Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods,” Phys. Rev. B 22, 15088-96 (2015).

    Google Scholar 

  26. L. Liu, L. Ge, P. Hu, H. Xiang, W. Yang, Q. Liu, D. Han, “Toroidal dipolar response in plasmonic nanoparticle clusters,” J. Phys. D. Appl. Phys. 51, 035106 (2018).

    Article  Google Scholar 

  27. T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94, 035119 (2016).

    Article  Google Scholar 

  28. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15, 263 (2016).

    Article  Google Scholar 

  29. J. Li, X. Xin, J. Shao,Y. Wang, J. Li, L. Zhou, Z. Dong, “From non- to super-radiating manipulation of a dipolar emitter coupled to a toroidal metastructure,” Opt. Express 23, 29384 (2015).

    Article  Google Scholar 

  30. C. Ding, L. Jiang, C. Sun, L. Wu, D. Xu, G. Zhang, J. Yao, “Stable terahertz toroidal dipolar resonance in a planar metamaterial,” Phys. Status Solidi B 252, 1388(2015).

    Article  Google Scholar 

  31. A. K. Azad, J. Dai, W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634-636 (2006).

    Article  Google Scholar 

  32. D. Liang, H. Zhang, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, W. Zhang, “Plasmonic Analog of Electromagnetically Induced Transparency in Stereo Metamaterials,” IEEE J. Sel. Top. Quantum Electron 23, 4700907 (2017).

    Google Scholar 

  33. W. Zhang, A. K. Azad , J. Han, J. Xu, J. Chen, X. Zhang, “Direct Observation of a Transition of a Surface Plasmon Resonance from a Photonic Crystal Effect,” Phys. Rev. Lett. 98, 183901(2007).

    Article  Google Scholar 

  34. Manoj Gupta and Singh R,” Toroidal versus Fano Resonances in High Q planar THz Metamaterials” Adv. Opt. Mater. 4, 12, 2119(2016).

    Article  Google Scholar 

  35. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8, 17278-17284 (2016).

    Article  Google Scholar 

  36. R. Singh, I. A. I. Alnaib, M. Koch, W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18, 13044 (2010).

    Article  Google Scholar 

  37. L. Ge, L. Liu, S. Dai, J. Chai, Q. Song, H. Xiang, D. Han, “Unidirectional scattering induced by the toroidal dipole moment in the system of plasmonic nanoparticles,” Opt. Express 25, 10853 (2016).

    Article  Google Scholar 

  38. Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, C. M. Soukoulis, “Achieving a high- Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97, 033816(2018).

    Article  Google Scholar 

  39. Y. Huang, W. Chen, P. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y. F. Chau, N. I. Zheludev, D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20, 1760 (2012).

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant numbers 61505146 and 61705167), and the Science Development Foundation of Tianjin University of Technology and Education (Grant number KJ1920, RC14-52), and the Start-up project of scientific research of Tianjin University of Technology and Education (Grant number KYQD1718 and KYQD1907). We also thank for the support from Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Song Wang, Shuang Wang, Quan Li, and Tai Chen. The collation of relevant literature is completed by Xiaoli Zhao and Jianyu Zhu. The first draft of the manuscript was written by Song Wang and Shuang Wang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, S., Zhao, X. et al. Excitation of Electromagnetically Induced Transparency Effect in Asymmetrical Planar Terahertz Toroidal Dipole Metasurfaces. J Infrared Milli Terahz Waves 42, 40–49 (2021). https://doi.org/10.1007/s10762-020-00756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00756-5

Keywords

Navigation