Skip to main content
Log in

Novel Pentagram THz Hollow Core Anti-resonant Fiber Using a 3D Printer

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A novel pentagram THz hollow core anti-resonant fiber (HC-ARF) is proposed and fabricated by a 3D printer in this paper. By utilizing the advantage of 3D print technology, a novel structure of one ring triangular air holes is introduced in the cladding and thus a pentagram hollow core is formed, which breaks through the limitation of the material absorption and effectively lowers the propagation loss of THz wave. Numerical results show that the loss as low as 0.02 cm−1 can be obtained for the proposed fiber within the THz frequency range from 0.5 to 2 THz. The fiber samples with different length of 10 cm and 15 cm are fabricated and measured experimentally. Experimental results demonstrate that the minimum loss of 0.025 cm−1 is obtained at 1.94 THz. Furthermore, the proposed fiber also has the advantage of excellent resistance to structural deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald and W. R. Tribe, “Security applications of terahertz technology,” Proceedings of SPIE Vol. 5070 44–52 (2003).

    Article  Google Scholar 

  2. M. Nagel, M. Foerst, H. Kurz, “THz biosensing devices: fundamentals and technology,” Journal of Physics: Condensed Matter 18(18): S601-S618 (2006).

    Google Scholar 

  3. M. Mandehgar, D. Grischkowsky, “Optimal dispersion compensation within atmospheric THz communication channels,” Radio and Wireless Symposium 2016, IEEE 196-199 (2016).

  4. Y. Xiang, J. Zhu, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photonics Journal 10(1):1–7 (2018).

    Article  Google Scholar 

  5. J. F. O’hara, R. Singh, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express 16(3): 1786–1795 (2018).

    Article  Google Scholar 

  6. G. Gallot, S. P. Jamison, “Terahertz waveguides,” Journal of the Optical Society of America B-Optical Physics 17(5): 851–863 (2000).

    Article  Google Scholar 

  7. R. Mendis, D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters 26(11): 846–848 (2001).

    Article  Google Scholar 

  8. K. Wang, DM. Mittleman, “Metal wires for terahertz wave guiding”, Nature, 432(7015): 376–379 (2004).

    Article  Google Scholar 

  9. H. Han, H. Park, M. Cho and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Applied Physics Letters 80(15): 2634–2636 (2002).

    Article  Google Scholar 

  10. J. Anthony, R. Leonhardt, A. Argyros, “Characterization of a microstructured Zeonex terahertz fiber,” Journal of the Optical Society of America B-Optical Physics 28(5): 1013–1018 (2011).

    Article  Google Scholar 

  11. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Optics Express 16(9): 6340–6351 (2008).

    Article  Google Scholar 

  12. MS. Islam, J. Sultana, S. Rana, MR. Islam, and M. Faisal, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission.” Optical Fiber Technology 34: 6–11 (2017).

    Article  Google Scholar 

  13. J. Fan, Y. Li, “Design of broadband porous-core bandgap terahertz fibers,” IEEE Photonics Technology Letters 28(10): 1096–1099 (2016).

    Article  Google Scholar 

  14. S. Rana, A. S. Rakin, M. R. Hasan, and M. S. Reza, “Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime,” Optics Communications 410: 452–456 (2018).

    Article  Google Scholar 

  15. R. Ding, S. Hou, D. Wang, “Novel design of a diamond-core photonic crystal fiber for terahertz wave,” Transmission. Progress In Electromagnetics Research Symposium-Spring 2017, IEEE 1148-1151 (2017).

  16. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Applied Physics Letters. 92(6): 064105 (2008).

    Article  Google Scholar 

  17. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters. 34(21): 3457–3459 (2009).

    Article  Google Scholar 

  18. D. Chen, H. Chen, “A novel low-loss terahertz waveguide polymer,” Optics Express 18(4): 3762–3767 (2010).

    Article  Google Scholar 

  19. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Optics Express 21(3): 3388–3399 (2013).

    Article  Google Scholar 

  20. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Scientific Reports, 5, 7620 (2015).

  21. W. Lu, “Demonstration of low-loss flexible fibers with Zeonex tube-lattice cladding for terahertz transmission,” Optical Fiber Communication Conference 2015, IEEE 1–3 (2015).

  22. H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9): 941–947 (2016).

    Article  Google Scholar 

  23. B. Zhang, Y. Guo, H. Zirath, and Y. P. Zhang, “Investigation on 3-D-printing technologies for millimeter- wave and terahertz applications,” Proceedings of the IEEE, 105(4): 723–736 (2017).

    Article  Google Scholar 

  24. H. Xin, and M. Liang, “3-D-printed microwave and THz devices using polymer jetting techniques,” Proceedings of the IEEE, 105(4): 737–755 (2017).

    Article  Google Scholar 

  25. A. D. Squires, and R. A. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices,” Journal of Infrared, Millimeter, and Terahertz Waves 39(7): 614–635 (2018).

    Article  Google Scholar 

  26. S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” Journal of Infrared, Millimeter, and Terahertz Waves 35(12): 993–997 (2014)

    Article  Google Scholar 

  27. W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Optics Letters 41(8): 1748–1751 (2016).

    Article  Google Scholar 

  28. S. Pandey, B. Gupta, A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Optics Express 21(21): 24422–24430 (2013).

    Article  Google Scholar 

  29. N. Yudasari, J. Anthony and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Optics Express 22(21): 26042–26054 (2014).

    Article  Google Scholar 

  30. A. L. Cruz, V. Serrão, C. L. Barbosa, and M. A. Franco, “3D printed hollow core fiber with negative curvature for terahertz applications,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications 14: 45–53 (2015).

    Google Scholar 

  31. J. Yang, J. Zhao,C. Gong, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Optics Express 24(20): 22454–22460 (2016).

    Article  Google Scholar 

  32. A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3): 43 (2018).

    Article  Google Scholar 

  33. L. D. van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer antiresonant waveguides for short-reach terahertz applications,” Applied Optics 57(14), 3953–3958 (2018).

    Article  Google Scholar 

  34. F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” European Conference and Exposition on Optical Communications, Optical Society of America, 2011: Mo. 2. LeCervin. 2.

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61575016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Yang or Guozhong Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Sheng, X., Zhao, G. et al. Novel Pentagram THz Hollow Core Anti-resonant Fiber Using a 3D Printer. J Infrared Milli Terahz Waves 40, 720–730 (2019). https://doi.org/10.1007/s10762-019-00600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00600-5

Keywords

Navigation