Skip to main content
Log in

Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. R. Chu, The electron cyclotron maser, Rev. Modern Phys., vol. 76, no. 2, pp. 489–540, 2004.

    Article  Google Scholar 

  2. M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Update 2016). KIT Scientific Publishing, Forschungsbericht, Karlsruhe, 2017.

  3. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett,S. H. Chen, T. T. Yang, and D. J. Dialetis, Theory and experiment ofultrahigh-gain gyrotron traveling wave amplifier, IEEE Trans. Plasma Science, vol. 27, no. 2, pp. 391–404, 1999.

    Article  Google Scholar 

  4. M. Blank, P. Borchard, et al. Design and demonstration of W-band gyrotron amplifiers for radar applications in Joint 32nd International Conference on Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics (IRMMW-THz), pp. 364–366, 2007.

  5. W. He, et al., Experimental test of a W-band gyro-TWA for cloud radar applications in 2016 I.E. 46th European Microwave Conference (EuMC), pp. 1099–1102, 2017.

  6. Z. H. Geng, P. K. Liu, et al., Design and Simulation of an Ultra-Broadband Ku-BandGyro-TWT for Radar Applications, International Journal of Infrared & Millimeter Waves, vol. 29, no. 7, pp. 627–633, 2008.

    Article  MathSciNet  Google Scholar 

  7. E. A. Nanni, A. B. Barnes, R. G. Griffin, and R. J. Temkin, THz dynamic nuclear polarization NMR, IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 145–163, 2011.

    Article  Google Scholar 

  8. Kumar, Nitin, et al., A review on the sub-THz/THz gyrotrons, Infrared Physics & Technology, vol. 76, pp. 38–51, 2016.

    Article  Google Scholar 

  9. J. R. Garner, L. Zhang, et al., Design Study of a 372-GHz Higher Order Mode Input Coupler, IEEE Transactions on Electron Devices, vol. 63, 8, pp. 3284–3290, 2016.

    Google Scholar 

  10. Hu W., Shapiro M., Kriescher K. E., et al., 140-GHz gyrotron experiments based on a confocal cavity, IEEE Transactions on Plasma Science, vol. 26, no. 3, pp. 366–374, 1998.

    Article  Google Scholar 

  11. J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, High-power 140-GHz quasioptical gyrotron traveling-wave amplifier, Physical Review Letter, vol. 90, pp. 258302–1–258302-4, 2003.

    Article  Google Scholar 

  12. Weinstein, L. A., Open Resonators and Open Waveguides, Golem Press, Boulder, CO, 1969.

    Google Scholar 

  13. X. Guan, W. Fu, Y. Yan, A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, no. 12, pp. 1457–1470, 2017.

    Article  Google Scholar 

  14. A. Bogdashov, A. V. Chirkov, G. G. Denisov, et al., High-Efficient Mode Converter for ITER Gyrotron, International Journal of Infrared & Millimeter Waves, 2005, 26(6):771–785.

    Article  Google Scholar 

  15. V. Gaponov, V. A. Flyagin, A. L. Gol'denberg, G. S. Nusinovich, SH. E. Tsimring, V. G. Usov, S. N. Vlasov, Powerful millimetre-wave gyrotrons, International Journal of Electronics, vol. 51, no. 4, pp. 277–302, 1981.

    Article  Google Scholar 

  16. X. Guan, W. Fu, Y. Yan, Continuously frequency-tunable 0.22 THz gyrotron oscillator with quasi-optical resonator, Terahertz Science and Technology, vol. 9, no. 4, pp. 166–176, 2016.

    Google Scholar 

  17. X. Guan, C. Chen, W. Fu, et al., Design of a 220-GHz continuous frequency-tunable gyrotron with quasi-optical cavity in 2015 IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015.

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Yin Huang, and Weirong Deng on engineering design.

Funding

This work is supported by the National Natural Science Foundation of China under Grant 61401064, 61771096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Fu, W. & Yan, Y. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube. J Infrared Milli Terahz Waves 39, 183–194 (2018). https://doi.org/10.1007/s10762-017-0458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0458-y

Keywords

Navigation