Skip to main content
Log in

Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency (f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10−13 and a relative precision of 8.8 × 10−12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. F. Akyildiz, J. M. Jornet, C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun., vol. 12, pp. 16–32, 2014.

  2. A. J. Seeds, H. Shams, M. J. Fice, C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Tech., vol. 33, pp. 579–587, 2015.

  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photon., vol. 1, pp. 517–525, 2007.

  4. T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev., vol. 3, pp. 123–137, 2009.

  5. M. Asada, S. Suzuki, N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys., vol. 47, pp. 4375–4384, 2008.

  6. S. Kohjiro, K. Kikuchi, M. Maezawa, T. Furuta, A. Wakatsuki, H. Ito, N. Shimizu, T. Nagatsuma, Y. Kado, “A 0.2–0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer,” Appl. Phys. Lett., vol. 93, art. 093508, 2008.

  7. J. J. A. Baselmans, M. Hajenius, J. R. Gao, T. M. Klapwijk, P. A. J. de Korte, B. Voronov, G. Gol’tsman, “Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers,” Appl. Phys. Lett., vol. 84, pp. 1958–1960, 2004.

  8. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett., vol. 88, art. 241104, 2006.

  9. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 191–201, 2011.

  10. H. Füser, M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves, vol. 35, pp. 585–609, 2013.

  11. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express, vol. 16, pp. 13052–13061, 2008.

  12. T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express, vol. 17, pp. 17034–17043, 2009.

  13. H. Füser, R. Judaschke, M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett., vol. 99, art. 121111, 2011.

  14. H. Ito, S. Nagano, M. Kumagai, M. Kajita, Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express, vol. 6, art. 102202, 2013.

  15. T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y.-D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express, vol. 23, pp. 11367–11377, 2015.

  16. T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett., vol. 35, pp. 1689–1691, 2010.

  17. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol., vol. 3, pp. 322–330, 2013.

  18. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Reports, vol. 4, art. 3816, 2014.

  19. T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Reports, vol. 5, art. 10786, 2015.

  20. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express, vol. 18, pp. 1667–1676, 2010.

  21. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, M. Tsuchiya, “Tunable all-optical pulse compression and stretching via doublet Brillouin gain lines in an optical fiber,” Opt. Lett., vol. 33, pp. 1192–1194, 2008.

  22. M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron., vol. 29, pp. 2693–2701, 1993.

  23. M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett., vol. 36, pp. 3969–3971, 2011.

Download references

Acknowledgments

This work was supported by Collaborative Research Based on Industrial Demand from the Japan Science and Technology Agency, and a Grant-in-Aid for Scientific Research No. 26246031 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors thank Drs. Hideyuki Ohtake and Jun Takayanagi of AISIN SEIKI Co., Ltd., Japan, for use of the IMRA laser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yasui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minamikawa, T., Hayashi, K., Mizuguchi, T. et al. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser. J Infrared Milli Terahz Waves 37, 473–485 (2016). https://doi.org/10.1007/s10762-015-0237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0237-6

Keywords

Navigation