Skip to main content
Log in

Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Metamaterials research continues to bear fruit in the form of novel devices and optics across the electromagnetic spectrum. This is especially true in the gigahertz, terahertz, and near infrared frequencies. Metamaterials also continue to be one of the fastest growing subdisciplines of anisotropy research, with most notable metamaterial advances based on inherently anisotropic designs. Despite significant progress, many challenges remain before fully dynamic, broad bandwidth, and nonlinear metamaterial devices become truly viable. We review the study of near field interactions, or coupling, in metamaterials with a focus on how manipulation of interactions in metamaterials has helped overcome some of the largest obstacles toward tunable metamaterials, broad bandwidth metamaterials, nonlinear metamaterials, and metamaterial experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Koch, Optical Society of America Technical Digest, SW1C.3 (2012).

  2. M. Koch, Opt. Photon. News 18, 20 (2007).

    Article  Google Scholar 

  3. L. Ren, et al., Nano Letters 9, 2610 (2009).

    Article  Google Scholar 

  4. F. Rutz, M. Koch, L. Micele, and G. de Portu, Appl. Opt. 45, 8070 (2006).

    Article  Google Scholar 

  5. J.-B. Masson and G. Gallot, Opt. Lett. 31, 265 (2006).

    Article  Google Scholar 

  6. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, Appl. Phys. Lett. 84, 3555 (2004).

    Article  Google Scholar 

  7. M. Tonouchi, Nature Photon 1, 97 (2007).

  8. V. G. Veselago, Physics-Uspekhi 10, 509 (1968).

    Article  Google Scholar 

  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microw. Theory. Techn. 47, 2075 (1999).

    Google Scholar 

  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).

    Article  Google Scholar 

  11. D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 88, 041109 (2006).

    Article  Google Scholar 

  12. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  Google Scholar 

  13. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  Google Scholar 

  14. M. Choi, et al., Nature 470, 369 (2011).

    Article  Google Scholar 

  15. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  Google Scholar 

  16. S. A. Ramakrishna, J. Pendry, D. Schurig, D. Smith, and S. Schultz, J. Mod. Opt. 49, 1747 (2002).

    Article  MATH  Google Scholar 

  17. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, Phys. Rev. E 71, 036609 (2005).

    Article  Google Scholar 

  18. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  Google Scholar 

  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  20. H. Tao, et al., Phys. Rev. B 78, 241103 (2008).

    Article  Google Scholar 

  21. T. Driscoll, et al., Science 325, 1518 (2009).

    Article  Google Scholar 

  22. N. I. Zheludev, Opt. Photon. News 22, 30 (2011).

    Article  Google Scholar 

  23. N. I. Zheludev and Y. S. Kivshar, Nature Mater. 11, 917 (2012).

    Article  Google Scholar 

  24. V. M. Shalaev, Nature Photon. 1, 41 (2007).

    Article  Google Scholar 

  25. N. Liu, H. Liu, S. Zhu, and H. Giessen, Nature Photon. 3, 157 (2009).

    Article  Google Scholar 

  26. M. C. K. Wiltshire, Science 291, 849 (2001).

    Article  Google Scholar 

  27. J. Li and C. T. Chan, Phys. Rev. E 70, 055602 (2004).

    Article  Google Scholar 

  28. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, Opt. Express 17, 136 (2009).

    Article  Google Scholar 

  29. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, Opt. Express 19, 21620 (2011).

    Article  Google Scholar 

  30. T. J. Yen, Science 303, 1494 (2004).

    Article  Google Scholar 

  31. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, Nature Photon. 3, 148 (2009).

    Article  Google Scholar 

  32. M. Liu, et al., Nature 487, 345 (2012).

    Article  Google Scholar 

  33. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).

    Article  Google Scholar 

  34. D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, J. Appl. Phys. 100, 024507 (2006).

    Article  Google Scholar 

  35. H. T. Chen, et al., Opt. Express 15, 1084 (2007).

    Article  Google Scholar 

  36. I. Bulu, H. Caglayan, and E. Ozbay, Opt. Express 13, 10238 (2005).

    Article  Google Scholar 

  37. D. R. Chowdhury, R. Singh, M. Reiten, H.-T. Chen, A. J. Taylor, J. F. O'Hara, and A. K. Azad, Opt. Express 19, 15817 (2011).

    Article  Google Scholar 

  38. F. Bilotti, A. Toscano, and L. Vegni, IEEE Trans. Antennas Propag. 55, 2258 (2007).

    Google Scholar 

  39. S. Hussain, J. M. Woo, and J.-H. Jang, Appl. Phys. Lett. 101, 091103 (2012).

    Article  Google Scholar 

  40. E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, Opt. Express 17, 16046 (2009).

    Article  Google Scholar 

  41. O. Turkmen, E. Ekmekci, and G. Turhan-Sayan, IET Microw. Antennas Propag. 6, 1102 (2012).

    Google Scholar 

  42. J. D. Baena, R. Marqués, F. Medina, and J. Martel, Phys. Rev. B 69, 014402 (2004).

    Article  Google Scholar 

  43. R. Marques, F. Mesa, J. Martel, and F. Medina, IEEE Transactions on Antennas and Propagation 51, 2572 (2003).

    Article  Google Scholar 

  44. I. Gil, Electron. Lett. 40, 1347 (2004).

    Article  Google Scholar 

  45. I. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, IEEE Trans. Microw. Theory Techn. 54, 2665 (2006).

    Google Scholar 

  46. O. Reynet and O. Acher, Appl. Phys. Lett. 84, 1198 (2004).

    Article  Google Scholar 

  47. J. Han, A. Lakhtakia, and C.-W. Qiu, Opt. Express 16, 14390 (2008).

    Article  Google Scholar 

  48. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, Appl. Phys. Lett. 90, 011112 (2007).

    Article  Google Scholar 

  49. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, Advanced Materials 24, 3491 (2012).

    Article  Google Scholar 

  50. M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martin, Electronics Letters 45, 417 (2009).

    Article  Google Scholar 

  51. T. H. Hand and S. A. Cummer, J. Appl. Phys. 103, 066105 (2008).

    Article  Google Scholar 

  52. D.-y. Zou, A.-m. Jiang, and R.-X. Wu, J. Appl. Phys. 107, 013507 (2010)

    Article  Google Scholar 

  53. H. A. Haus and W. Huang, Proc. IEEE 79, 1505 (1991).

    Article  Google Scholar 

  54. F. Hesmer, et al., Physica Status Solidi B 244, 1170 (2007).

    Article  Google Scholar 

  55. E. Ekmekci and G. Turhan-Sayan, Prog. Electrom. Res. B 12, (2009).

  56. M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 100, 111114 (2012).

    Article  Google Scholar 

  57. D. A. Powell, K. Hannam, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. B 83, 235420 (2011).

    Article  Google Scholar 

  58. G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, arXiv preprint arXiv:1302.0782 (2013).

  59. D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. B 82, 155128 (2010).

    Article  Google Scholar 

  60. E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, Phys. Rev. B 83, 193103 (2011).

    Article  Google Scholar 

  61. M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, Appl. Phys. Lett. 95, 084105 (2009).

    Article  Google Scholar 

  62. W. M. Zhu, et al., Advanced Materials 23, 1792 (2011).

    Article  Google Scholar 

  63. W. Zhu, et al., Appl. Phys. Lett. 99, 221102 (2011).

    Article  Google Scholar 

  64. T. Hand and S. Cummer, IEEE Antenn. Wireless Propag. Lett. 6, 401 (2007).

  65. B. Ozbey and O. Aktas, Opt. Express 19, 5741 (2011).

    Article  Google Scholar 

  66. I. Gil, F. Martin, X. Rottenberg, and W. De Raedt, Electronics Letters 43, 1153 (2007).

    Article  Google Scholar 

  67. H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, Phys. Rev. Lett. 103, 147401 (2009).

    Article  Google Scholar 

  68. .S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Advanced Materials 23, 4422 (2011).

    Article  Google Scholar 

  69. Y. H. Fu, et al., Advanced Functional Materials 21, 3589 (2011).

    Article  Google Scholar 

  70. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, Nano Letters 11, 2142 (2011).

    Article  Google Scholar 

  71. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nature Nanotechnol. 8, 252 (2013).

    Google Scholar 

  72. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007).

    Article  Google Scholar 

  73. B. Ferguson and X.-C. Zhang, Nature Materials 1, 26 (2002).

    Article  Google Scholar 

  74. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser & Photonics Reviews 5, 124 (2011).

    Article  Google Scholar 

  75. F. Blanchard, L. Razzari, F. Su, G. Sharma, R. Morandotti, T. Ozaki, M. Reid, and F. Hegmann, Nonlinear Photonics and Novel Optical Phenomena, 297 (2012).

  76. A. Pashkin, F. Junginger, C. Schmidt, B. Mayer, O. Schubert, S. Mährlein, R. Huber, and A. Leitenstorfer, Proc. of SPIE, 82600M (2012).

  77. A. Rose, D. Huang, and D. R. Smith, Phys. Rev. Lett. 107, 063902 (2011).

    Article  Google Scholar 

  78. A. Rose, S. Larouche, and D. R. Smith, Phys. Rev. A 84, 053805 (2011).

    Article  Google Scholar 

  79. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).

    Article  Google Scholar 

  80. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005).

    Article  Google Scholar 

  81. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, Opt. Express 16, 16058 (2008).

    Article  Google Scholar 

  82. S. V. Perminov, V. P. Drachev, and S. G. Rautian, Opt. Lett. 33, 2998 (2008).

    Article  Google Scholar 

  83. P.-Y. Chen, M. Farhat, and A. Alù, Phys. Rev. Lett. 106, 105503 (2011).

    Article  Google Scholar 

  84. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, J. Opt. Soc. Am. B 23, 529 (2006).

    Article  Google Scholar 

  85. H. Merbold, A. Bitzer, and T. Feurer, Opt. Express 19, 7262 (2011).

    Article  Google Scholar 

  86. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502 (2006).

    Article  Google Scholar 

  87. E. Poutrina, S. Larouche, and D. R. Smith, Opt. Comm. 283, 1640 (2010).

    Article  Google Scholar 

  88. A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).

    Article  Google Scholar 

  89. A. K. Popov and V. M. Shalaev, Opt. Lett. 31, 2169 (2006).

    Article  Google Scholar 

  90. D. Huang, A. Rose, E. Poutrina, S. Larouche, and D. R. Smith, Appl. Phys. Lett. 98, 204102 (2011).

    Article  Google Scholar 

  91. S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Phys. Rev. Lett. 109, 015502 (2012).

    Article  Google Scholar 

  92. M. Lapine, M. Gorkunov, and K. H. Ringhofer, Phys. Rev. E 67, 065601 (2003).

    Article  Google Scholar 

  93. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, Nature Mater. (2011).

  94. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, J. Phys. D: Appl. Phys 41, 232004 (2008).

    Article  Google Scholar 

  95. H. C. Ko, et al., Small 5, 2703 (2009).

    Article  Google Scholar 

  96. K. E. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, Appl. Phys. Lett. 100, 081111 (2012).

    Article  Google Scholar 

  97. H. T. Chen, et al., Opt. Lett. 32, 1620 (2007).

  98. K. Fan, et al., Phys. Rev. Lett. 110, 217404 (2013)

    Article  Google Scholar 

  99. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, Phys. Rev. Lett. 101, 157403 (2008).

    Article  Google Scholar 

  100. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, J. Phys. Chem. C 114, 7299 (2010).

    Article  Google Scholar 

  101. A. Hartstein, J. R. Kirtley, and J. C. Tsang, Phys. Rev. Lett. 45, 201 (1980).

    Article  Google Scholar 

  102. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, Opt. Express 19, 13700 (2011).

    Article  Google Scholar 

  103. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, Opt. Express 19, 23573 (2011).

    Article  Google Scholar 

  104. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, Nano Letters 11, 2104 (2011).

    Article  Google Scholar 

  105. A. Schneider, A. Shuvaev, S. Engelbrecht, S. O. Demokritov, and A. Pimenov, Phys. Rev. Lett. 103, 103907 (2009).

    Article  Google Scholar 

  106. P. Vasa, et al., Phys. Rev. Lett. 101, 116801 (2008).

    Article  Google Scholar 

  107. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008).

    Article  Google Scholar 

  108. P. Tassin, L. Zhang, T. Koschny, E. Economou, and C. Soukoulis, Phys. Rev. Lett. 102, 53901 (2009).

    Article  Google Scholar 

  109. L. Chieffo, G. Keiser, A. Strikwerda, K. Fan, S. Erramilli, X. Zhang, and R. Averitt, Bulletin of the American Physical Society 57 (2012).

  110. D. A. Powell and Y. S. Kivshar, Appl. Phys. Lett. 97, 091106 (2010).

    Article  Google Scholar 

  111. W. M. Zhu, H. Cai, T. Mei, T. Bourouina, J. F. Tao, G. Q. Lo, D. L. Kwong, and A. Q. Liu, IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 196 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Averitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiser, G.R., Fan, K., Zhang, X. et al. Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review. J Infrared Milli Terahz Waves 34, 709–723 (2013). https://doi.org/10.1007/s10762-013-9993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9993-3

Keywords

Navigation