Skip to main content
Log in

THz Gyrotron and BWO Designed for Operation in DNP-NMR Spectrometer Magnet

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Dynamic nuclear polarization (DNP) in high-field nuclear magnetic resonance (NMR) spectroscopy requires medium-power terahertz radiation, which nowadays can be provided basically by gyrotrons with superconducting magnets. As the electron cyclotron frequency is very close to the frequency of electron paramagnetic resonance for the same magnetic field, under certain conditions the gyrotron can be installed inside the same solenoid used for NMR spectrometer. This eliminates the need for an additional superconducting magnet, results in a shorter terahertz transmission line, and can make DNP systems practical. In addition to an extremely low-voltage gyrotron (“gyrotrino”), we analyze also advantages of strong magnetic field for a slow-wave electron device as an alternative terahertz source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.R. Carver and C.P. Slichter, Phys. Rev. 92, 212 (1953).

    Article  Google Scholar 

  2. A.W. Overhauser, Phys. Rev. 92, 411 (1953).

    Article  MATH  Google Scholar 

  3. R.G. Griffin and T.F. Prisner, Phys. Chem. Chem. Phys 12, 5737 (2010).

    Article  Google Scholar 

  4. E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, IEEE Trans. on THz Science and Technology 1, 145 (2011).

    Article  Google Scholar 

  5. C. Griesinger, M. Bennati, H.M. Vieth, C. Luchinat, G. Parigi, P. Hofer, F. Engelke, S.J. Glaser, V. Denysenkov, T.F. Prisner, Progress in NMR Spectr. 64, 4 (2012).

    Article  Google Scholar 

  6. L.R. Becerra, G.J. Gerfer, R.J. Temkin, D.J. Singel, and R.G. Griffin, Phys. Rev. Lett. 71, 3562 (1993).

    Article  Google Scholar 

  7. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, and R.J. Temkin, IEEE Trans. Plasma Sci. 35, 27 (2007).

    Article  Google Scholar 

  8. T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, La Agusu, H. Mori and S. Kobayashi, Appl. Magn. Resonance 34, 265 (2008).

    Article  Google Scholar 

  9. V. Denisenkov, M.J. Prandolini, M. Gafurov, D. Sezar, B. Endeward, and T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786 (2010).

    Article  Google Scholar 

  10. N.P. Venediktov, V.V. Dubrov, V.E. Zapevalov, S.Y. Kornishin, A.V. Kotov, A.N. Kuftin, O.V. Malygin, A.S. Sedov, A.S. Fiks, and V.I. Tsalolikhin, Radiophys. Quantum Electronics 53, 237 (2010).

    Article  Google Scholar 

  11. V.L. Bratman, M.Yu. Glyavin, V.E. Zapevalov, Yu.K. Kalynov, A.E. Fedotov, II Dynamic Nuclear Polarization Symposium: Theory, Hardware, Applications, Radicals, Koenigstein, Germany, Sept. 2-4, 2009.

  12. V.L. Bratman, A.E. Fedotov, Yu.K. Kalynov, 8th Int. Workshop “Strong microwaves and terahertz waves: sources and applications” (SMP-2011), Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011.

  13. J.R. Sirigiri, T. Maly, Patent Application No. US 2012/0176133 A1, Jul. 12, 2012.

  14. L.A. Surin, B.S. Dumesh, F. Lewen, D.A. Roth, V.P. Kostromin, F.S. Rusin, G. Winnewisser, and I. Pak, Rev. Sci. Instrum. 72, 2535 (2001).

    Article  Google Scholar 

  15. M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, and T.F. Prisner, Journal of the American Chemical Society 131, 6090 (2009).

    Article  Google Scholar 

  16. K.R. Thurber, W.-M. Yau, and R. Tycko, J. Magn. Resonance 204, 303 (2010).

    Article  Google Scholar 

  17. A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Goldenberg, M. I. Petelin, V. G. Usov, and V. K. Yulpatov, Infrared Phys. 18, 385 (1978).

    Article  Google Scholar 

  18. G.S. Nusinovich, Introduction to the Physics of Gyrotrons (JHU Press, Balyimore, MD, 2004).

    Google Scholar 

  19. M.Y. Glyavin, N.A. Zavolskiy, A.S. Sedov, and G.S. Nusinovich, Physics of Plasmas 20, 033103 (2013).

    Article  Google Scholar 

  20. V.E.Zapevalov, A.N.Kuftin, V.N.Manuilov, M.A.Moiseev, A.B..Pavelyev, A.S.Sedov, N.A.Zavolsky, Proceedings of 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” (SMP-2011), Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, p. 143.

  21. M.B. Golant, Z.T. Alekseenko, Z.S. Korotkova, Instruments and Experimental Techniques (Pribory i tekhnika eksperimenta) 12, 231 (1969).

    Google Scholar 

  22. D. Chernin, A. Burke, I. Chernyavskiy, J. Petillo, R. Dobbs, A. Roitman, P. Horoyski, M. Hyttinen, D. Berry, M. Blank, K. Nguyen, V. Jabotinsky, D. Pershing, E. Wright, J. Calame, B. Levush, J. Neilson, T. Gaier, A. Skalare, N.S. Barker, R. Weikle, J. Booske, 2010 Int. Vacuum Electronics Conf. (IVEC), Monterey, California, May 18-20, 2010, p. 217.

  23. V.L. Bratman, B.S. Dumesh, A.E. Fedotov, P.B. Makhalov, B.Z. Movshevich, F.S. Rusin, IEEE Trans. of Plasma Sci. 38, 1466 (2010).

    Article  Google Scholar 

  24. V.L. Bratman, A.E. Fedotov, and P.B. Makhalov, Physics of Plasmas 19, 020704 (2012).

    Article  Google Scholar 

  25. J. W. Gibson, G. A. Haas, and R. E. Thomas, IEEE Trans. Electron Devices 36, 209 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was partially supported by RFBR, research projects Nos. 12-02-31722, 13-02-01176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Fedotov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratman, V.L., Fedotov, A.E., Kalynov, Y.K. et al. THz Gyrotron and BWO Designed for Operation in DNP-NMR Spectrometer Magnet. J Infrared Milli Terahz Waves 34, 837–846 (2013). https://doi.org/10.1007/s10762-013-0024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0024-1

Keywords

Navigation