Skip to main content
Log in

Terahertz Spectroscopic Analysis of Peptides and Proteins

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Spectroscopic analysis using the Terahertz frequencies between 0.1-15 THz (3–500 cm−1) has been underutilised by the biochemistry community but is starting to yield some scientifically interesting information. Analysis of structures from simple molecules like N-methylacetamide, to polyamides, peptides and relatively complex proteins provides different types of information dependant on the molecular size. The absorbance spectrum of small molecules is dominated by individual modes and specific hydrogen bonds, peptide spectra have peaks associated with secondary structure, while protein spectra are dominated by ensembles of hydrogen bonds and/or collective modes. Protein dynamics has been studied using Terahertz spectroscopy using proteins like bacteriorhodopsin, illustrating a potential application where this approach can provide complementary global dynamics information to the current nuclear magnetic resonance and fluorescence-based techniques. Analysis of higher-order protein structures like polyomavirus virus-like particles generate quite different spectra compared to their constituent parts. The presence of an extended hydration layer around proteins, first postulated to explain data generated using p-germanium spectroscopy may present a particularly interesting opportunity to better understand protein’s complex interaction with water and small solutes in an aqueous environment. The practical aspects of Terahertz spectroscopy including sample handling, the use of molecular dynamics simulation and orthogonal experiment design are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.D. Palik, History of far-infrared research. I. The Rubens era, J. Opt. Soc. Am. 67, 857–865 (1977).

    Article  Google Scholar 

  2. N. Grinsberg, History of far-infrared research. II. The grating era, 1925–1960, J. Opt. Soc. Am. 67: 865–871 (1977).

    Article  Google Scholar 

  3. W.D Duncan, G.P. Williams, Infrared synchrotron radiation from electron storage-rings, Appl. Opt. 22, 2914–1923 (1983).

    Article  Google Scholar 

  4. P.R. Smith, D.H. Auston, M.C. Nuss, Subpicosecondphotoconducting dipole antennas, IEEE J. Quantum Electron.24, 255–260 (1988).

    Article  Google Scholar 

  5. C. Fattinger, D. Grischkowsky, Terahertz beams, Appl. Phys. Lett. 54, 490–492 (1989).

    Article  Google Scholar 

  6. A.G. Markelz, A. Roitberg, E.J. Heilweil, Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz, Chem. Phys. Lett. 320, 42–48 (2000).

    Article  Google Scholar 

  7. E. Brűndermann, H.P. Rőser, First operation of a far-infrared p-germanium laser in a standard closed-cycle machine at 15 K, Infrared Phys. Technol. 38, 201–203 (1997).

    Article  Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade lasers, Science 264, 553–556 (1994).

    Article  Google Scholar 

  9. D. J. Cook, R. M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air, Opt. Lett. 25, 1210–1212 (2000).

    Article  Google Scholar 

  10. T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005).

    Article  Google Scholar 

  11. J. Dai, X. Xie, X.-C. Zhang, Detection of broadband Terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006).

    Article  Google Scholar 

  12. K. Itoh, T. Shimanouchi, Far-infrared spectra of N-methylacetamide and related compounds and hydrogen-bond force constraints, Biopolymers 5, 921–930 (1965).

    Article  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomase, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cuis, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, W.M. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussion 98, Revision A.5; Gaussion, Inc.: Pittsburgh, PA, (1998).

  14. K. Herrebout, K. Clou, H.O. Desseyn, Vibrational spectroscopy of N-methylacetamide revisited, J. Phys. Chem. A 105, 4865–4881 (2001).

    Article  Google Scholar 

  15. Y. Abe, S. Krimm, Normal vibrations of crystalline polyglycine I. Biopolymers, 11, 1817–1839(1972).

    Article  Google Scholar 

  16. Y. Abe, S. Krimm, Normal vibrations of crystalline polyglycine II. Biopolymers, 11, 1841–1853 (1972).

    Article  Google Scholar 

  17. W.H. Moore, S. Krimm, Vibrational analysis of peptides, polypeptides, and proteins. I. Polyglycine I, Biopolymers, 15, 2439–2464 (1976).

    Article  Google Scholar 

  18. W.H. Moore, S. Krimm, Vibrational analysis of peptides, polypeptides, and proteins. II. Β-poly(L-alanylglycine), Biopolymers, 15, 2465–2483 (1976).

    Article  Google Scholar 

  19. K. Itoh, T. Nakahara, T. Shimanouchi, Far-infrared spectra of polyalanines with α-helical and β-form structures, Biopolymers, 6, 1759–1766 (1968).

    Article  Google Scholar 

  20. K. Itoh, T. Shimanouchi, M. Oya, Far-infrared spectra of poly(-α-amino acids) with basic alkyl group side chains, Biopolymers 7, 649–658 (1969).

    Article  Google Scholar 

  21. T. Ding, T. Huber, A.P.J. Middelberg, R.J. Falconer, Characterisation of low frequency modes in aqueous peptides using far-infrared spectroscopy and molecular dynamic simulation, J. Phys. Chem. A 115, 11559–11565 (2011).

    Article  Google Scholar 

  22. U. Buontempo, G. Careri, P. Fasella, A. Ferraro, Far-infrared spectra of some globular proteins, Biopolymers, 10, 2377–2386 (1971).

    Article  Google Scholar 

  23. N.N. Brandt, A.Y. Chikishev, A.V. Kargovsky, M.M. Nazarov, O.D. Parashchuk, D.A. Sapozhnikov, I.N. Smirnova, A.P. Shkurinov, N.V. Sumbatyan, Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges, Vib. Spectrosc.47, 53–58 (2008).

    Article  Google Scholar 

  24. S. Dőrr, U. Schade, P. Hellwig, Far infrared spectroscopy on hemoproteins: A model compound study from 1800–100 cm−1. Vib. Spectrosc.47, 50–65 (2008).

    Google Scholar 

  25. Y. El Khoury, A. Trivella, J. Gross, P. Hellwig, Probing the hydrogen bonding structure in the Rieske protein, ChemPhysChem 11, 3313–3319 (2010).

    Article  Google Scholar 

  26. Y.N. Chirgadze, A.M. Ovsepyan, Observation of small conformational changes in sperm-whale myoglobin by far-infrared spectra, Biopolymers 12, 637–645 (1973).

    Article  Google Scholar 

  27. H. Chen, L. Wang, Y.G. Qu, T.Y. Kuang, L.B. Li, W.X. Peng, Investigation of guanidine hydrochloride induced chlorophyll protein 43 and 47 denaturation in the terahertz frequency range, J. Appl. Phys. 102, 074701 (2007).

    Article  Google Scholar 

  28. Y.F. He, P.I. Pei, J.R. Knab, J.Y. Chen, A.G. Markelz, Protein dynamical transition does not require protein structure, Phys. Rev. Lett. 101, 178103 (2008).

    Article  Google Scholar 

  29. T.Q. Luong, P.K. Verma, R.K. Mitra, M. Havenith, Do hydration dynamics follow the structural perturbation during thermal denaturation of a protein: A Terahertz adsorption study, Biophys. J. 101, 925–933 (2011).

    Article  Google Scholar 

  30. R.J. Falconer, H. Zakaria, Y.Y. Fan, A.P. Bradley, A.P.J. Middelberg, Far-infrared spectroscopy of protein higher-order structures, Appl. Spectrosc. 64, 1259–1264 (2010).

    Article  Google Scholar 

  31. H. Zakaria, I. Jones, B.M. Fischer, D. Abbott, A.P.J. Middelberg, R.J. Falconer, Low frequency spectroscopic characterisation of monomeric and fibrillar lysozyme. Appl. Spectrosc. 66 (2011).

  32. S.E. Whitmire, D. Wolpert, A.G. Markelz, J.R. Hillebrecht, J. Galan, R.R. Birge, Protein flexibility and conformational state: A comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin, Biophys. J. 85, 1269–1277 (2003).

    Article  Google Scholar 

  33. C.F. Zhang, S.M. Durbin, Hydration induced far-infrared absorption increase in myglobin, J. Phys. Chem. B 110, 23607–23613 (2006).

    Article  Google Scholar 

  34. J. Knab, J.-Y. Chen, A.G. Markeltz, Hydration dependence of conformational dielectric relaxation of lysozyme, Biophys. J. 90, 2576–2581 (2006).

    Article  Google Scholar 

  35. A. G. Markelz, S. Whitmire, J. Hillebrecht, R. Birge, THz time domain spectroscopy of biomolecular conformational modes, Phys. Med. Biol. 47, 3797–3805 (2002).

    Article  Google Scholar 

  36. D. ben-Avraham, Vibrational normal-mode spectrum of globular proteins. Phys. Rev. B. 47, 14559–14560 (1993).

    Google Scholar 

  37. L. Meinhold, J.C. Smith, Protein dynamics from x-ray crystallography: Anisotropic, global motion in diffuse scattering patterns. Proteins 66, 941–953 (2007)

    Article  Google Scholar 

  38. R. Elber, M. Karplus, Low-frequency modes in proteins: Use of the effective-medium approximation to interpret the fractal dimension observed in electron-spin relaxation measurements. Phys. Rev. Lett.56, 394–397 (1986).

    Article  Google Scholar 

  39. Y.F. He, J.Y. Chen, J.R. Knab, W.J. Zheng, A.G. Markelz, Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100, 1058–1065 (2011).

    Article  Google Scholar 

  40. F. Tama, Y.-H. Sanejouand, Conformational change of proteins arising from normal mode calculations Protein Engineering, 14, 1–6 (2001).

    Article  Google Scholar 

  41. P. Petrone, V. S. Pande, Can conformational change be described by only a few normal modes? Biophys.J., 90, 1583–1593 (2006).

    Article  Google Scholar 

  42. G.E. Walrafen, Raman spectrum of water: Transverse and longitudinal acoustic modes below ≈300 cm−1 and optic modes above ≈300 cm−1, J Phys. Chem. 94, 2237–2239 (1990).

    Article  Google Scholar 

  43. P.A. Madden, R.W. Impey, On the infrared and Raman spectra of water in the region 5–250 cm−1, Chem. Phys. Lett. 123, 502–506 (1986).

    Article  Google Scholar 

  44. R. Hielscher, T. Friedrich, P. Hellwig, Far- and mid-infrared spectroscopic analysis of the substrate-induced structural dynamics of respiratory complex I, ChemPhysChem 12, 217–224 (2011).

    Article  Google Scholar 

  45. A.G. Markelz, Terahertz dielectric sensitivity to biomolecular structure and function, IEEE J. Quantum Electronics, 14, 180–189 (2008).

    Article  Google Scholar 

  46. R. Balu, H. Zhang, E. Zukowski, J.-Y. Chen, A. G. Markelz, S. K. Greguric, Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: Similarities and differences, Biophys. J. 94, 3217–3226 (2008).

    Article  Google Scholar 

  47. J.-Y. Chen, J. R. Knab, J. Cerne, A. G. Markelz. Large oxidation dependence observed in terahertz dielectric response for cytochrome c, Phys. Rev. E. 72, 040901 (2005).

    Article  Google Scholar 

  48. S.J. Hanslip, N.R. Zaccai, A.P.J. Middelberg, R.J., Falconer, Intrinsic fluorescence as an analytical probe of virus-like particle assembly and maturation. Biochem. Biophys. Res. Com. 375, 351–355 (2008).

    Article  Google Scholar 

  49. R. Liu, M.-X., He, R.-X. Su, Y.-J.Yu, W. Qi, Z.-M.He, Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods, Biochem. Biophys. Res. Com. 391, 862–867 (2010).

    Article  Google Scholar 

  50. G. Png, R.J. Falconer, B.M. Fischer, H.A. Zakaria, S. Mickan, A.P.J. Middelberg, D. Abbott, Terahertz spectrometric differentiation of microstructures in protein gels. Optics Express, 17, 13102–13115 (2009].

    Article  Google Scholar 

  51. N.N. Brandt, A.Y. Chikishev, A.V. Kargovsky, S. Lebedenko, Low-frequency vibrational motions in proteins: physical mechanisms and effect on functioning, Eur. Phys. J. B 65, 419–424 (2008)

    Article  Google Scholar 

  52. K. Mazur, I. A. Heisler, S. R. Meech, Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides, J. Phys. Chem. B 114, 10684–10691 (2010).

    Article  Google Scholar 

  53. G. Giraud, J. Karolin, K. Wynne, Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES Spectroscopy, Biophys. J. 85, 1903–1913 (2003).

    Article  Google Scholar 

  54. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. 104, 20749–20752 (2007).

    Article  Google Scholar 

  55. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner, M. Havenith Protein sequence- and pH-dependent hydration probed by Terahertz spectroscopy, J. Am. Chem. Soc. 130, 2374–2375 (2008).

    Article  Google Scholar 

  56. M. Heyden, M. Havenith, Combining THz spectroscopy and MD simulations to study protein-hydration coupling, Methods, 52, 74–83 (2010).

    Article  Google Scholar 

  57. M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, M. Havenith, Long-range influence of carbohydrates on the solvation dynamics of waters-answers from Terahertz absorption measurements and molecular modeling simulations, J. Am. Chem. Soc. 130, 5773–5779 (2008).

    Article  Google Scholar 

  58. D.A. Schmidt, O. Birer, S. Funkner, B.P. Born, R. Gnanasekaran, G.W. Schwaab, D.M. Leitner, M. Havenith, Rattling in the cage: Ions as probes of sub-pico second water network dynamics, Am. Chem. Soc. 131, 18512–18517 (2009).

    Article  Google Scholar 

  59. B. Born, H. Weingärtner, E. Bründermann, M. Havenith, Solvation dynamics of model peptides probed by Terahertz spectroscopy. Observation of the onset of collective modes, J. Am. Chem. Soc. 131, 3752–3755 (2009).

    Article  Google Scholar 

  60. T. Ding, R. Li, J.A. Zeitler, T.L. Huber, L.F. Gladden, A.P.J. Middelberg, R.J. Falconer, Terahertz and far-infrared spectroscopy of alanine-rich peptides with variable ellipticity. Optics Express, 18, 27431–27444 (2010).

    Article  Google Scholar 

  61. N.Q. Vihn, S.J. Allen, K.W. Plaxco, Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions, J. Am. Chem. Soc. 133, 8942–8947 (2011).

    Article  Google Scholar 

  62. J.D. Batchelor, A. Olteanu, A. Tripathy, G.J. Pielak, Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126, 1958–1961 (2004).

    Article  Google Scholar 

  63. A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen bond structure in liquid water, Science, 301, 347–349.

  64. Y. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    Article  Google Scholar 

  65. R.J. Falconer, C. Chan, K. Hughes, T.P. Munro, Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients, J. Chem. Technol. Biotechnol. 86, 942–948 (2011).

    Article  Google Scholar 

  66. J.J. Schwegman, J.F. Carpenter, S.L. Nail, Infrared microscopy for in situ measurement of protein secondary structure during freezing and freeze-drying, J. Pharm. Sci. 96, 179–195 (1969).

    Article  Google Scholar 

  67. A. Barth, C. Zscherp, What vibrations tell us about proteins, Quart. Rev. Biophys. 35, 369–430 (2002).

    Article  Google Scholar 

  68. A.H. Martin, M.B.J. Meinders, M.A. Bos, M.A. Cohen Stuart, T. van Vliet, Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy, Langmuir 19, 2922–2928 (2003).

    Article  Google Scholar 

  69. J.A. Rupley, E. Gratton, G. Careri, Water and globular proteins, Trends Biochem. Sci. 8, 18–22 (1983).

    Article  Google Scholar 

  70. D. Ringe, G.A. Petsko, The ‘glass transition’ in protein dynamics: what it is, why it occurs and how to exploit it. Biophys. Chem. 105, 667–680 (2003).

    Article  Google Scholar 

  71. W. Doster, The protein-solvent glass transition. BBA-Proteins Proteom.1804, 3–14 (2010).

    Article  Google Scholar 

  72. L. Whitmore, B.A. Wallace, Protein secondary structure analysies from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89,392–400 (2007).

    Article  Google Scholar 

  73. D.M. Byler, H. Susi, Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25, 469–487 (1986).

    Article  Google Scholar 

  74. A. Dong, P. Huang, W.S. Caughey, Protein secondary structures in water from 2nd-derivative amide-I infrared spectra. Biochem.29, 3303–3308 (1990).

    Article  Google Scholar 

  75. C.D. Putnam, M. Hammel, G.L. Hura, J.A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Q. Rev. Biophys. 40, 191–285 (2007).

    Article  Google Scholar 

  76. Y. Sun, Y. Zhang, A Pickwell-McPherson, Investigating antibody interactions with a polar liquid using Terahertz pulsed spectroscopy, Biophys. J. 100, 225–231 (2011).

    Article  Google Scholar 

  77. J.Y. Chen, J. R. Knab, S. Ye, Y.F. He, A. G. Markelz, Terahertz dielectric assay of solution phase protein binding, Appl. Phys. Lett. 90, 243901 (2007).

    Article  Google Scholar 

  78. R.J. Falconer, B.M. Collins, Survey of the year 2009: applications of isothermal titration calorimetry, J. Mol. Recogn. 24, 1–16 (2011).

    Article  Google Scholar 

  79. R.L. Rich, D.G. Myszka, Survey of the 2009 commercial optical biosensor literature, J. Mol. Recogn. 24, 892–914 (2011).

    Article  Google Scholar 

  80. A. Trivella, T. Gaillard, R.H. Stote, P. Hellwig, Far infrared spectra of solid state aliphatic amino acids in different protonation states, J Chem. Phys. 132, 115105 (2010).

    Article  Google Scholar 

  81. M.P. Gaigeot, M. Martinez, R. Vuilleumier, Infrared spectroscopy in the gas and liquid phase from first principle molecular dynamics simulations: application to small peptides, Mol. Phys. 105, 2857–2878 (2007).

    Article  Google Scholar 

  82. D.A. McQuarrie, Statistical Mechanics, (Harper-Collins Publishers, New York, 1976)

    Google Scholar 

  83. P.H. Berens, D.H.J. Mackay, G.M. White, K.R. Wilson, Thermodynamics and quantum corrections from molecular-dynamics for liquid water, J. Chem. Phys. 79, 2375–2389 (1983).

    Article  Google Scholar 

  84. T. Ding, A.P.J. Middelberg, T. Huber, R.J. Falconer, Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme, Vib. Spectrosc. 61, 144–150 (2012).

    Article  Google Scholar 

  85. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, Gromacs: Fast, flexible, and free, J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  86. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, D. Marx, Dissecting the THz spectrum of liquid water from first principles via correlations in time and space. Proc. Natl. Acad. Sci. 107, 12068–12073 (2010).

    Article  Google Scholar 

  87. M. Mernea, O. Calborean, L. Petruscu, M.P. Dinca, A. Leca, D. Apostol, T. Dascalu, D. Mihailescu, The flexibility of hydrated bovine serum albumin investigated by THz spectroscopy and molecular modelling, J. Optoelecton. Adv. Mater. 12, 110–114 (2010).

    Google Scholar 

  88. J. Xu, K.W. Plaxco, S.J. Allen, Collective dynamics of lysozyme in water: Terahertz absorption spectroscopy and comparison with theory, J. Phys. Chem. B 110, 24255–24259 (2006).

    Article  Google Scholar 

  89. L. Skjaerven, S.V. Hollup, N. Reuter, Normal mode analysis for proteins, J. Mol. Struct. Theochem, 898, 42–48 (2009).

    Article  Google Scholar 

  90. L. Zhou, S.A. Stiegelbaum, Effects of water on protein dynamics studied by a novel course grained normal mode approach, Biophys. J. 94, 3461–3474 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Falconer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falconer, R.J., Markelz, A.G. Terahertz Spectroscopic Analysis of Peptides and Proteins. J Infrared Milli Terahz Waves 33, 973–988 (2012). https://doi.org/10.1007/s10762-012-9915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9915-9

Keywords

Navigation