Skip to main content
Log in

Development of THz-range Gyrotrons for Detection of Concealed Radioactive Materials

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The Center for Applied Electromagnetics (AppEl) at the University of Maryland had started development of a sub-THz gyrotron for detecting concealed radioactive materials. The concept is based on the use of a high-power gyrotron whose power being focused in a small spot with dimensions on the order of a wavelength exceeds the threshold level required for initiating a freely localized microwave breakdown in air. However, in the absence of radioactive materials, the ambient electron density is so small that there is a very small probability to find a free electron in this small volume to trigger the avalanche breakdown process. Therefore the fact that the breakdown was observed would indicate that there is a hidden radioactive material in the vicinity of a focused wave beam. We present the design data for a 200–300 kW, 670 GHz gyrotron operating with a pulsed solenoid and describe a single-shot pulsed solenoid producing 27–28 T magnetic fields. Also numerous issues in this specific application are discussed, viz. threshold conditions for initiating the breakdown, production of gamma rays by concealed radioactive materials and their role in producing low energy electrons outside a container, wave beam focusing in a small spot by a limited-size antenna, random walk of energetic electrons which may result in appearance of free electrons in a given volume during the RF pulse and comparison of diffusion time with the time required for competing processes, such as ionization and three-body attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. http://www.ireap.umd.edu/AppEl/

  2. P. Siegel, IEEE Trans. Microwave Theory Tech., vol. 50, 910 (2002).

    Article  Google Scholar 

  3. D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Proc. IEEE, vol. 93, 1722 (2005).

    Article  Google Scholar 

  4. V. L. Granatstein and G. S. Nusinovich, APS-DPP Meeting, November 2–6, 2009, Atlanta, Georgia, Bulletin of the APS, vol. 54, No. 15, page 29, paper BO6 2; the same authors “Detecting Excess Ionizing Radiation by Electromagnetic Breakdown of Air”, J. Appl. Phys., vol. 107 (2010), to be published.

  5. Technical report “Nanosecond pulse breakdown initiation and growth”, RADC-TDR-63–525, (January 1964).

  6. A. G. Litvak, “Freely Localized Gas Discharge in Microwave Beams”, Ch. 4 in “Applications of High-Power Microwaves” ed. By A. V. Gaponov-Grekhov and V. L. Granatstein, Artech House, Norwood, MA, 1994.

  7. G. S. Nusinovich, G. M. Milikh and B. Levush, J. Appl. Phys., vol. 80, 4189 (1996).

    Article  Google Scholar 

  8. Z. Henis, G. Milikh, K. Papadopoulos, and A. Zigler, J. Appl. Phys., vol. 103, 103111 (2008).

    Article  Google Scholar 

  9. P. Woskoboinikov, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, Appl. Phys, Lett., vol. 32, 527 (1978).

    Article  Google Scholar 

  10. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared Millim. Waves, vol. 4, pp. 629–638 (July 1983).

    Article  Google Scholar 

  11. V. L. Bratman (personal communication, 2010); in this experiment the radiation from a large-orbit gyrotron operating at the third cyclotron harmonic was used.

  12. A. A. Negirev and A. S. Fedorov, Radiotekhnika, No. 4, p. 41 (1999).

    Google Scholar 

  13. H. P. Freund and T. M. Antonsen, Jr., “Principles of Free-electron Lasers”, Chapman&Hall, 2nd edition, Cornwall, Great Britain, 1996.

    Google Scholar 

  14. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil & G. P. Williams, Nature, vol. 420, 153 (2002)

    Article  Google Scholar 

  15. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, K. E. Kreischer, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, IEEE Trans. Electron Devices, vol. 52, pp. 798–807 (May 2005).

    Article  Google Scholar 

  16. M. Yu. Glyavin, A. G. Luchinin, V. N. Manuilov, and G. S. Nusinovich, IEEE Trans. Plasma Sci., vol. 36, pp. 591–596 (June 2008).

    Article  Google Scholar 

  17. M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov, Phys. Rev. Lett., vol. 100, 015101 (2008).

    Article  Google Scholar 

  18. G. S. Nusinovich, R. Pu, J. Yu, O. Sinitsyn, T. M. Antonsen, Jr., and V. L. Granatstein, APS-DPP Meeting, November 2–6, 2009, Atlanta, Georgia, Bulletin of the APS, vol. 54, No. 15, page 29, paper BO6 3.

  19. V. Gregers-Hansen, FCC Forum, July 14, 2000.

  20. K. Nguyen, E. Wright, V. Jabotinski, D. Pershing, P. Horoyski, A. Roitman, R. Dobbs, M. Hyttinen, D. Berry, D. Chernin, A. Burke, J. Petillo, J. Calame, B. Levush, J. Pasour, ICOPS-2010, Norfolk, June 2010, paper 2C-4,”Design of a 670 GHz extended interaction klystron”.

  21. K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi and K. Kajiwara, Nature physics, 3, 411–414 (2007).

    Article  Google Scholar 

  22. G. S. Nusinovich,“Introduction to the Physics of Gyrotrons”, The Johns Hopkins University Press, Baltimore, 2004, Ch. 4.

  23. M. Botton, T. M. Antonsen, Jr. B. Levush, K. T. Nguyen, and A. N. Vlasov, IEEE Trans. Plasma Sci., vol. 26, pp.882–892 (1998).

    Article  Google Scholar 

  24. R. Pu, O. Sinitsyn, G. Nusinovich, IEEE 37th Int. Conf. on Plasma Science, June 20–24, 2010, Norfolk, VA, USA, paper 3P-34.

  25. A. L. Goldenberg and M. I. Petelin, “The Formation of Helical Electron Beams in an Adiabatic Gun”, Radiophys. Quantum Electron., 16, 106–111 (1973).

    Article  Google Scholar 

  26. S. E. Tsimring, “Electron Beams and Microwave Vacuum Electronics”, Wiley-Interscience, 2007, p. 474.

  27. R. Pu, G. S. Nusinovich and T. M. Antonsen, Jr., “Effect of the electron spread in guiding center radii on the gyrotron efficiency”, Physics of Plasmas, 17 083105 (August 2010).

  28. V. F. Kovalenko, “Physics of Heat Transfer and Electro-Vacuum Devices”, Sovetskoe Radio, Moscow (1975), Section 7.3.

  29. G. Knoll, “Radiation Detection and Measurement”, Wiley & Sons, New York, 1979, p. 17.

    Google Scholar 

  30. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, LA- UR-03-1987, Los Alamos National Laboratory, April 2003.

  31. National Council on Radiation Protection and Measurements (NCRP), Report No. 160, “Ionizing Radiation Exposure of the Population of the United States”, (2009).

  32. N. J. Carron, “An Introduction to the Passage of Energetic Particles through Matter”, Taylor and Francis, New York – London, 2007

    Google Scholar 

  33. A. V. Gurevich, N. D. Borisov and G. M. Milikh, “Physics of microwave discharges”, Gordon & Breach Science Publishers, Amsterdam, Netherlands (1997).

    Google Scholar 

  34. W. W. Destler, Z. Segalov, and J. Rodgers, J. Appl. Phys., 66, 1469 (1989).

    Article  Google Scholar 

  35. A. Yariv, “Quantum Electronics”, 2nd Edition, John Wiley and Sons, Inc., 1975, New York, Sect. 6.6.

  36. A. W. Ali and T. Coffey, “On the Microwave Interaction with Matter and Microwave Breakdown of Air”, NRL Memorandum Report 4320, Sept. 1980.

  37. This figure is reproduced from the DNA Rate Book (1972) where it was prepared based on original studies of inelastic cross-sections in N2 [A. G. Engelgartd, A. V. Phelps, and G. G. Risk, Phys. Rev., 135, A1566 (1964)] and O2 [R. D. Hake, Jr. and A. V. Phelps, Phys. Rev., 158, 70 (1967)].

  38. L. G. Cristophorou, D. L. McCorkie, and A. A. Christodoulidies, in “Electron-Molecule Interactions”, ed. by L. G. Cristophorou, (Academic, Orlando, 1983), pp. 478–618.

    Google Scholar 

  39. A. V. Gurevich, “Nonlinear Phenomena in the Ionosphere”, Springer-Verlag, New York, 1978.

    Google Scholar 

Download references

Acknowledgment

This work is sponsored by the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Nusinovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusinovich, G.S., Pu, R., Antonsen, T.M. et al. Development of THz-range Gyrotrons for Detection of Concealed Radioactive Materials. J Infrared Milli Terahz Waves 32, 380–402 (2011). https://doi.org/10.1007/s10762-010-9708-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9708-y

Keywords

Navigation