Skip to main content
Log in

Terahertz Spectroscopy of Histidine Enantiomers and Polymorphs

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have measured terahertz and powder x-ray diffraction spectra of D-histidine, L-histidine, and DL-histidine. The as-received D and L material exists in two different polymorphs: D-histidine is in the metastable monoclinic form, while L-histidine is in the stable orthorhombic form. For both the L and D enantiomers, recrystallization of the as-received material results in a mixture of the monoclinic and orthorhombic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. F. Taday, I. V. Bradley, D. D. Arnone, and M. Pepper, “Using terahertz pulse spectroscopy to study the crystalline structure of a drug: A case study of the polymorphs of ranitidine hydrochloride,” J. Pharm. Sci. 92, 831 (2003).

    Article  Google Scholar 

  2. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D-Appl. Phys. 39, R301 (2006).

    Article  Google Scholar 

  3. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler et al., “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94, 837 (2005).

    Article  Google Scholar 

  4. P. C. Upadhya, K. L. Nguyen, Y. C. Shen, J. Obradovic, K. Fukushige et al., “Characterization of crystalline phase-transformations in theophylline by time-domain terahertz spectroscopy,” Spectr. Lett. 39, 215 (2006).

    Article  Google Scholar 

  5. V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff et al., “Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications,” Faraday Discuss. 126, 255 (2004).

    Article  Google Scholar 

  6. C. J. Strachan, T. Rades, D. A. Newnham, K. C. Gordon, M. Pepper et al., “Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials,” Chem. Phys. Lett. 390, 20 (2004).

    Article  Google Scholar 

  7. G. A. Narvaez, J. Kim, and J. W. Wilkins, “Effects of morphology on phonons in nanoscopic silver grains,” Phys. Rev. B 72, 155411 (2005).

    Article  Google Scholar 

  8. G. M. Day, J. A. Zeitler, W. Jones, T. Rades, and P. F. Taday, “Understanding the influence of polymorphism on phonon spectra: Lattice dynamics calculations and terahertz spectroscopy of carbamazepine,” J. Phys. Chem. B 110, 447 (2006).

    Article  Google Scholar 

  9. J. C. Lee, H. Tazawa, T. Ikehara, and T. Nishi, “Crystallization kinetics and morphology in miscible blends of two crystalline polymers,” Polym. J. 30, 780 (1998).

    Article  Google Scholar 

  10. E. Hendry, M. Koeberg, J. M. Schins, H. K. Nienhuys, V. Sundstrom et al., “Interchain effects in the ultrafast photophysics of a semiconducting polymer: THz time-domain spectroscopy of thin films and isolated chains in solution,” Phys. Rev. B 71 (2005).

  11. R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlio, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185 (2005).

    Article  Google Scholar 

  12. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe et al., “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).

    Article  Google Scholar 

  13. M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86, 053903 (2005).

    Article  Google Scholar 

  14. T. M. Korter, R. Balu, M. B. Campbell, M. C. Beard, S. K. Gregurick et al., “Terahertz spectroscopy of solid serine and cysteine,” Chem. Phys. Lett. 418, 65 (2006).

    Article  Google Scholar 

  15. C. P. M. Roelands, S. Jiang, M. Kitamura, J. H. terHorst, H. J. M. Kramer et al., “Antisolvent crystallization of the polymorphs of L-histidine as a function of supersaturation ratio and of solvent composition,” Cryst. Growth Des. 6, 955 (2006).

    Article  Google Scholar 

  16. M. T. Averbuch-Pouchot, “Crystal structure of L-histidinium phosphite and a structure reinvestigation of the monoclinic form of L-histidine,” Zeitschrift fuer Kristallographie 207, 111 (1993).

    Article  Google Scholar 

  17. M. S. Lehmann, T. F. Koetzle, and W. C. Hamilton, “Precision neutron-diffraction structure determination of protein and nucleic-acid components. 4. Crystal and molecular structure of amino acid L-Histidine,” Int. J. Pept. Protein Res. 4, 229 (1972).

    Article  Google Scholar 

  18. F. H. Allen, “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Cryst. B 58, 380 (2002).

    Article  Google Scholar 

  19. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields et al., “Mercury: visualization and analysis of crystal structures,” J. Appl. Crystallogr. 39, 453 (2006).

    Article  Google Scholar 

  20. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321 (1996).

    Article  Google Scholar 

  21. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss et al., “Terahertz optical rectification from (110) zincblende crystals,” Appl. Phys. Lett. 64, 1324 (1994).

    Article  Google Scholar 

  22. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924 (1996).

    Article  Google Scholar 

  23. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time- resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764 (2000).

    Article  Google Scholar 

  24. J. J. Madden, E. L. McGandy, and N. C. Seeman, “Crystal structure of monoclinic form of L-histidine,” Acta Cryst. B 28, 2382 (1972).

    Article  Google Scholar 

  25. J. J. Madden, N. C. Seeman, and E. L. McGandy, “Crystal structure of orthorhombic form of L-(+)-histidine,” Acta Cryst. B 28, 2377 (1972).

    Article  Google Scholar 

  26. P. Edington and M. M. Harding, “Crystal structure of DL-histidine,” Acta Cryst. B 30, 204 (1974).

    Article  Google Scholar 

  27. R. Rungsawang, Y. Ueno, I. Tomita, and K. Ajito, “Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals,” J. Phys. Chem. B 110, 21259 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation (CHE-0911593) and AstraZeneca for partial support of this work. KS thanks the German Academic Exchange Service (DAAD) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Schmuttenmaer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

True, A.B., Schroeck, K., French, T.A. et al. Terahertz Spectroscopy of Histidine Enantiomers and Polymorphs. J Infrared Milli Terahz Waves 32, 691–698 (2011). https://doi.org/10.1007/s10762-010-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9645-9

Keywords

Navigation