Skip to main content
Log in

Theoretical and Numerical Investigation of a Four-cavity TE021-Mode Gyroklystron

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Using self-consistent field theory and PIC simulation, the interaction of electron flow with HF fields in a four-cavity Gyroklystron with TE021-mode has been analyzed. Self-consistent field theory includes both linear theory and nonlinear theory. Optimized parameters and their corresponding efficiency, gain and bandwidth of the optimized Gyroklystron have been found. Numerical investigation using PIC simulation is also given. Parameters of the cavities which are operating in TE021 mode are optimized to minimize TE011 mode and to suppress parasitic self-oscillations. The results of theory are in good qualitative agreement with PIC simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Thumm, Novel application of millimeter and submillimeter wave gyro-devices. Int. J. Infrared. Millim. Waves. 22(3), 377–3s85 (2001).

    Article  Google Scholar 

  2. A. A. Tolkachev, Gyroklystron-based 35 GHz radar for observation of space objects. In Proc. 22nd Int. Conf. Infrared Millimeter Waves, vol. 37–38, H. P. Freund, Ed., Wintergreen, VA, 1997.

  3. I. I. Antokov, E. V. Zasypkin, E. V. Sokolov, V. K. Yulpatov, A. P. Keyer, V. S. Musatov, and V. E. Myasnikov, 35 GHz radar gyroklystrons,”in Proc. 18th Int. Conf. Infrared Millimeter Waves, vol. 2104, J. R. Birch and T. J. Parker, Eds., Colchester, UK, 1993, pp. 338–339.

  4. M. Blank, G. Bruce, E. Danly, and B. Levush, Demonstration of W-Band Gyroklystron amplifiers with improved gain and efficiency. IEEE Trans. Plasma Sci. 28, 706–711 (2000).

    Article  Google Scholar 

  5. J. P. Calame, M. Garven, J. J. Choi, and K. Nguyen, Experimental studies of a bandwidth and power production in a three-cavity, 35 GHz gyroklystron amplifier. Phys. Plasma. 6, 285–297 (1999).

    Article  Google Scholar 

  6. I. I. Antakov, M. A. Moiseev, E. V. Sokolov, and E. V. Zasypkin, Theorical and experimental inverstigation of X-band two-cavity gyroklystron. Int. J. Infrared. Millim. Waves. 15(5), 873–887 (1994).

    Article  Google Scholar 

  7. E. V. Zasypkin, M. A. Moiseev, E. V. Sokolov, and V. K. Yulpatov, Effect of penultimate position and tuning on three-cavity Gyroklystron amplifier performance. Int. J. Electron. 78(2), 423–433 (1995).

    Article  Google Scholar 

  8. B. Levush, M. Blank, J. Calame et al., Modeling and design of millimeter wave Gyroklystron. Phys. Plasma. 6(5), 2233–2240 (1999).

    Article  Google Scholar 

  9. G. S. Nusinovich, Introduction to the physics of gyrotrons. (Johns Hopkins, 2004), p 7.

  10. M. Garven, J. P. Calame, K. T. Nguye, n et al., Experimental studies of a four-cavity,35 GHz gyroklystron amplifier. IEEE Trans. Plasma Sci. 28, 672–680 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Wang.

Additional information

This work is supported by the Chinese Natural Science Foundation under Contract 60532

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Luo, Y., Xu, Y. et al. Theoretical and Numerical Investigation of a Four-cavity TE021-Mode Gyroklystron. Int J Infrared Milli Waves 29, 1113–1122 (2008). https://doi.org/10.1007/s10762-008-9415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9415-0

Keywords

Navigation