Skip to main content
Log in

Suppression of Residual Side-lobes in a Coaxial Bragg Reflector

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

This note demonstrates the existence and possible suppression of the residual side-lobes in a coaxial Bragg reflector by employing Blackman window distribution, no matter if the phase difference between the outer and inner corrugations is 0, or π/2, or π. Physical explanation is qualitatively given to the effect of the window distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. L. Petlin, and P. S. Strelkov, “Relativistic gyrotrons and cyclotron autoresonace masers”. Int. J. Electron. 51, 541–567 (1981).

    Article  Google Scholar 

  2. A. Yariv, and M. Nakamura, “Periodic Structures for Integrated Optics”. IEEE J. Quantum Electron. QE-13, 233 – 253 (1977).

    Article  ADS  Google Scholar 

  3. S. Alberti et al., “Experimental Study of 28 GHz High-Power Long-Pluse Cyclotron Autoresonance Maser Oscillator”. Phys. Rev. Lett. 71, 2018–2021 (1993).

    Article  ADS  Google Scholar 

  4. H. Kogelnik, and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Laser”. J. Appl. Phys. 43, 2327–2335 (1972).

    Article  ADS  Google Scholar 

  5. C. K. Chong et al., “Bragg reflectors”. IEEE Trans. Plasma Sci. 20, 393–402 (1992).

    Article  ADS  Google Scholar 

  6. R. B. McCowan, A. W. Filflet, S. H. Gold, V. L. Granatstein, and M. C. Wang, “Design of a waveguide resonator with rippled wall reflectors for a 100 GHz CARM oscillator experiment”. Int. J. Electron. 65, 463–475 (1988).

    Article  Google Scholar 

  7. A. J. Palmer, “Coupled-mode theory of overmoded cylindrical metal Bragg-reflectors”. IEEE J. Quantum Electron. QE-23, 65–70 (1987).

    Article  ADS  Google Scholar 

  8. N. S. Ginzburg, “The use of a hybrid resonator consisting of one-dimensinal and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser”. Phys. Plasmas. 9, 2789–2802 (2002).

    Article  ADS  Google Scholar 

  9. I. V. Konoplev, P. McGran, K. Ronald, A. W. Cross, and A. D. R. Phelps, “Wave interference and band control in multiconductor one-dimendional Bragg reflectors”. J. Appl. Phys. 97, 073101 (2005).

    Article  Google Scholar 

  10. R. B. McCowan et al., “The Design of a 100-GHz CARM oscillator experiment”. IEEE Trans. Electron Devices. 36, 1968–1975 (1989).

    Article  ADS  Google Scholar 

  11. S. Albert et al., ”Experimental Study of a 28 GHz High-Power Long-Pule Cyclotron Autoresonance Maser Oscillator”. Phys. Rev. Lett. 71, 2018–2021 (1993).

    Article  ADS  Google Scholar 

  12. P. McGrane, I. V. Konoplev, K.Ronal, A. W. Cross and A. D. R. Phelps, “Experimental and theoretical study of constructive and destructive wave interference in a coaxial 1D Bragg reflectors”, in Joint 29th Int, Conf. Infrared Millimeter Waves and 12th Int. Conf. on Terahertz Electronics Dig., Karlsruhe, 177–178 (2004).

  13. I. V. Konoplev, P. McGran, A. D. R. Phelps, A. W. Cross, and K. Ronald, “Observation of photonic band-gap control in one-dimensional Bragg structures”. Appl. Phys. Lett. 87, 121104 (2005).

    Article  ADS  Google Scholar 

  14. J. J. Barroso, and J. P. Leite Neto, “Design of coaxial Bragg reflectors”. IEEE Trans. Plasma Sci. 34, 666–672 (2006).

    Article  ADS  Google Scholar 

  15. Y.-X. Lai, S.-C. Zhang, and H.-B. Zhang, “A Coaxial Bragg Reflector for Cyclotron Autoresonance Maser Oscillators”. IEEE Microw. Wirel. Compon. Lett. 17, 328–330 (2007).

    Article  Google Scholar 

  16. Y.-X. Lai, and S.-C. Zhang, “Multiwave interaction formulation of a coaxial Bragg structure and its experimental verification”. Phys. Plasmas. 14, 113301 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  17. S.-C. Zhang, X.-H. Chen, and Y.-X. Lai, ”Effect of Eccentricity on Transmission in a Coaxial Bragg Structure”. Int. J. Infrared Millim. Waves. 28, 1043–1050 (2007).

    Article  ADS  Google Scholar 

  18. T.-Y. Yun, and K. Chang, “Uniplanar One-Dimensional Photonic-Bandgap Structures and Resonators”. IEEE Trans. Microwave Theor. Tech. 49, 549–553 (2001).

    Article  Google Scholar 

  19. J. Pretterebmer, and M. Thumm,”Design of Improved Bragg Reflectors For Resonators In Overmoded High-Power Microwave Oscillators”, in Dig. Infrared and Millimeter Wave Conf. SPIE 1514, 298–300 (1990).

  20. Q. S. Wang, D. B.McDermott, A. T. Lin, N. C. Luhmann, and K. R. Chu,”High power CARM for high gradient RF linac”, in Proc.1990 SPIE(1126) Conf. Intense Microwave and Particle Beams, 220–227(1990).

  21. Computer Simulation Technology (CST), User’s Manual 5, in CST-Microwave Studio, 2003.

  22. F. J. Harris, ”On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”. Proc. of The IEEE. 66, 51–83 (1978).

    Article  Google Scholar 

  23. C. S. Williams, Designing Digital Filters, Chapter 4. (Prenice-Hall, Inc., Englewood Cliffs, New Jersey, 1986).

    Google Scholar 

  24. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, “FEL’s with Bragg reflection resonators: Cyclotron autoresonance masers vesus ubitrons”. IEEE J. Quantum Electron. QE-19, 282–293 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by NSFC (Grant No. 60471038), the Young-Teachers Foundation of Southwest Jiaotong University (Grant No. 2007Q035) and the Science Foundation of Southwest Jiaotong University (Grant No. 2006B53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Chang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XH., Zhang, SC. & Lai, YX. Suppression of Residual Side-lobes in a Coaxial Bragg Reflector. Int J Infrared Milli Waves 29, 552–557 (2008). https://doi.org/10.1007/s10762-008-9359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9359-4

Keywords

Navigation