Skip to main content
Log in

Finite-Difference Time-Domain Algorithm for Dispersive Media Based on Runge-Kutta Exponential Time Differencing Method

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The electromagnetic propagation in dispersive media is modeled using finite difference time domain (FDTD) method based on the Runge-Kutta exponential time differencing (RKETD) method. The second-order RKETD-FDTD formulation is derived. The high accuracy and efficiency of the presented method is confirmed by computing the transmission and reflection coefficients for a nonmagnetized collision plasma slab in one dimension. The comparison of the numerical results of the RKETD and the exponential time differencing (ETD) algorithm with analytic values indicates that the RKETD is more accurate than the ETD algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Luebbers, and F. Hunsberger, FDTD for N th-order dispersive media. IEEE Trans. Antennas Propagat. 40, 1297–1301 (1992).

    Article  ADS  Google Scholar 

  2. R. Siushansian, and J. LoVetri, A comparison of numerical techniques for modeling electromagnetic dispersive media. IEEE Microwave Guided Wave Lett. 5, 426–428 (1995).

    Article  Google Scholar 

  3. Y. Takayama, and W. Klaus, Reinterpretation of the auxiliary differential equation method for FDTD. IEEE Microwave Wireless Components Lett. 12(3), 102–104 (2002)Mar.

    Article  Google Scholar 

  4. D. M. Sullivan, Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propagat. 40, 1223–1230 (1992).

    Article  ADS  Google Scholar 

  5. J. A. Pereda, A. Vegas, and A. Prieto, FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique. IEEE Trans. Microwave Theory Tech. 50(7), 1689–1695 (2002).

    Article  Google Scholar 

  6. Q. Chen, M. Katsurai, and P. H. Aoyagi, An FDTD formulation for dispersive media using a current density. IEEE Trans. Antennas Propagat. 46, 1739–1745 (1998).

    Article  ADS  Google Scholar 

  7. D. F. Kelley, and R. J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propagat. 44, 792–797 (1996).

    Article  ADS  Google Scholar 

  8. J. L. Young, Propagation in linear dispersive media: Finite difference time-domain methodologies. IEEE Trans. Antennas Propagat. 43, 422–426 (1995).

    Article  ADS  Google Scholar 

  9. J. L. Young, A higher order FDTD method for EM propagation in collisionless cold plasma. IEEE Trans. Antennas Propagat. 44, 1283–1289 (1996).

    Article  ADS  Google Scholar 

  10. S. Liu, N. Yuan, and J. Mo, A novel FDTD formulation for dispersive media. IEEE Microwave Wireless Components Lett. 13(5), 187–189 (2003)Mar.

    Article  Google Scholar 

  11. C. Schuster, A. Christ, and W. Fichtner, Review of FDTD time-steping schemes for efficient simulation of electric conductive media. Microw. Opt. Technol. Lett. 25, 16–21 (2000).

    Article  Google Scholar 

  12. P. G. Petropoulos, Analysis of exponential time-differencing for FDTD in lossy dielectrics. IEEE Trans. Antennas Propag. 45(6), 1054–1057 (1997)Jun.

    Article  ADS  Google Scholar 

  13. S. M. Cox, and P. C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Sh. J. Huang, Exponential time differencing fdtd formulation for plasma. Microw. Opt. Technol. Lett. 49(6), 1363–1364 (2007)June.

    Article  Google Scholar 

  15. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1 14(1), 185–200 (1994)Jan.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work is supported by National Nature Science foundation of China (NO 60771017) & The Provincial Education Science Foundation of Jiangxi (NO Z-03510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhong, S. & Liu, S. Finite-Difference Time-Domain Algorithm for Dispersive Media Based on Runge-Kutta Exponential Time Differencing Method. Int J Infrared Milli Waves 29, 323–328 (2008). https://doi.org/10.1007/s10762-008-9327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9327-z

Keywords

Navigation