Skip to main content
Log in

Properties of Building and Plastic Materials in the THz Range

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We present measurements of the frequency dependent refractive index and absorption coefficient of a variety of common building and plastic materials between 100 and 1000 GHz. Accurate knowledge of the material parameters is indispensable for the modeling of bound media propagation phenomena including single and multiple reflections, transmission, diffraction and scattering effects. These models are for example required for a reliable channel simulation to investigate signal propagation in future wireless communication systems operating with Gigabit data rates at frequencies above 100 GHz. Also, the measured material parameters can be used for the investigation and development of THz system components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Nagatsuma, Exploring sub-terahertz waves for future wireless communications, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 4.

  2. A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. Microwave Theor. Tech. 54(5), 1937–1944 (2006).

    Article  Google Scholar 

  3. S. Cherry, Edholm’s law of bandwidth, IEEE Spectr. 41, 19–50 (2004).

    Google Scholar 

  4. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, and T. Kürner, Concept and perspectives of future ultra broadband THz communication systems, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 96.

  5. R. Piesiewicz, J. Jemai, M. Koch, and T. Kürner, THz channel characterization for future wireless gigabit indoor communication systems, SPIE Intl. Symp. on Integrated Optoelectronic Devices, Terahertz and Gigahertz Electronics and Photonics IV, Vol. 5727, San Jose, USA, January 2005, pp. 166–176.

  6. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, and T. Kürner, Terahertz characterisation of building materials, IEE Electron. Lett. 41(18), 1002–1004 (2005).

    Article  Google Scholar 

  7. M. Born and E. Wolf, Principles of Optics. (Pergamon Press, 1964), pp. 36–47.

  8. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction. (Artech House, 1990).

  9. A. G. Dimitriou and G. D. Sergiadis, Architectural features and urban propagation, IEEE Trans. Antennas Propag. 54(3), 774–784 (2006).

    Article  Google Scholar 

  10. K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surface scattering, IoP Waves in Random Media 11(1), R1–R30 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, 1987), pp. 80–98.

  12. J. W. Lamb, Miscellaneous data on materials for millimetre and submillimetre optics, Int. J. IR Millim. Waves 17(12), 1997–2034 (1996).

    Article  Google Scholar 

  13. G. J. Simonis, Index to the literature dealing with the near millimeter-wave properties of materials, Int. J. IR Millim. Waves 3(4), 439–469 (1982).

    Article  ADS  Google Scholar 

  14. N. Hiromoto, R. Fukasawa, and I. Hosako, Measurement of optical properties of construction materials in the terahertz region, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 157.

  15. M. Hangyo, M. Tani, and T. Nagashima, Terahertz time-domain spectroscopy of solids: a review, Int. J. IR Millim. Waves 26(12), 1661–1690 (2005).

    Article  Google Scholar 

  16. D. Mittleman, Terahertz Imaging, in Sensing with Terahertz Radiation, edited by D. Mittleman (Springer, 2003), pp. 117–153.

  17. L. Duvillaret, F. Garet, and J.-L. Coutaz, A reliable method for extraction of material parameters in Terahertz time-domain spectroscopy, IEEE J. Quantum Electron. 2(3), 739–746 (1996).

    Article  Google Scholar 

  18. P. U. Jepsen and B. M. Fischer, Dynamic range in terahertz time-domain transmission and reflection spectroscopy, Optics Lett. 30(1), 29–31 (2005).

    Article  ADS  Google Scholar 

  19. R. S. Burington and D. Curtis, Handbook of Probability and Statistics with Tables (McGraw-Hill Book Company, 1970), p. 111.

Download references

Acknowledgement

The authors thank Dr. Martin Bastian and Dr. Karsten Kretschmer from Süddeutsches Kunststoff-Zentrum, Würzburg, Germany, for providing the samples P7 and P8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Piesiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piesiewicz, R., Jansen, C., Wietzke, S. et al. Properties of Building and Plastic Materials in the THz Range. Int J Infrared Milli Waves 28, 363–371 (2007). https://doi.org/10.1007/s10762-007-9217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9217-9

Keywords

Navigation