Skip to main content
Log in

Design of a Powerful and Compact THZ Oscillator

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

According to simulations, a Large Orbit Gyrotron with a 30 keV/1 A electron beam and magnetic field of 5 T can produce CW radiation with output power of 102−103 W at the frequencies of 0.4–0.5 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Golant et al., “A wide-range generators of submillimeter waves,” Instrum. Exp. Tech. (3), 231–232 (1969).

  2. A. A. Negirev, “MMW and sub-MMW broadband BWOs,” Vacuum Microwave Electronics, Collected Reviews, IAP RAS, 2002, pp.93–94 (in Russian).

  3. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, “A submillimeter-wave gyrotrons: theory and experiment,” Int. J. Infrared Millim. Waves 4(4), 629–637 (1983).

    Article  ADS  Google Scholar 

  4. S. Spira-Hakkarainen, K. E. Kreischer, and R. J. Temkin, “Submillimeter-wave harmonic gyrotron experiment,” IEEE Trans. Plasma Sci. 8(3), 334–342 (1990).

    Article  ADS  Google Scholar 

  5. T. Idehara et al., “Development of frequency tunable, medium power gyrotrons (Gyrotron FU series) as submillimeter wave radiation sources,” IEEE Trans. Plasma Sci. 27(2), 340–354 (1999).

    Article  ADS  Google Scholar 

  6. M. K. Hornstein et al., “Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator,” IEEE Trans. Electron Devices 52(5), 798–807 (2005).

    Article  ADS  Google Scholar 

  7. V. P. Bolotin et al., “Status of the Novosibirsk High Power Free Electron Laser,” Proc. IRMM/THz-2004, Karlsruhe, Germany, pp.55–56.

  8. L. R. Elias, G. Ramian, J. Hu, and A. Amir, “Observation of a single mode operation of a free electron laser,” Phys. Rev. Lett. 57, 424–427 (1986).

    Article  ADS  Google Scholar 

  9. H. R. Jory, Research and Development Technical Report ECOM-01873-F. (Varian Associates, Palo Alto, California, 1968).

    Google Scholar 

  10. D. B. McDermott, N. C. Luhmann, Jr., A. Kupiszewski, and H. R. Jory, “Small-signal theory of a large-orbit cyclotron resonance harmonic maser,” Phys. Fluids 26, 1936–1941 (1983).

    Article  MATH  ADS  Google Scholar 

  11. W. Lawson, W. W. Destler, and C. D. Striffler, “High-power microwave generation from a large-orbit gyrotron in vane and hole-and-slot conducting wall geometries,” IEEE Trans. Plasma Sci. 13(6), 444–453 (1985).

    Article  ADS  Google Scholar 

  12. G. S. Nusinovich, “Non-linear theory of a large-orbit gyrotron,” Int. J. Electronics 72, 959–967 (1992).

    Google Scholar 

  13. V. L. Bratman, Yu. K. Kalynov, A. E. Fedotov, “To the theory of gyrodevises with thin electron beams (Large Orbit Gyrotron),” J. Tech. Phys. 68(10), 91–98 (1998).

    Google Scholar 

  14. V. L. Bratman et al., “Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band,” IEEE Trans. Plasma Sci. 27(2), 456–461 (1999).

    Article  ADS  Google Scholar 

  15. V. L. Bratman, Yu. K. Kalynov, V. N. Manuilov, M. M. Ofitserov, and S. V. Samsonov, “Relativistic gyrotron at high cyclotron harmonics,” Radioteknika i Electronika 46(6), 744–751 (2001) (in Russian).

    Google Scholar 

  16. V. L. Bratman, Yu.K. Kalynov, V. N. Manuilov, S. V. Samsonov, “Large Orbit Gyrotron at submillimeter waves”, Digest of the Joint 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, Virginia, 2005, pp.443–444.

  17. T. Idehara et al., “A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet,” IEEE Trans. Plasma Sci. 32(3), 903–909 (2004).

    Article  ADS  Google Scholar 

  18. V. L. Bratman, Yu.K. Kalynov, V. N. Manuilov, S. V. Samsonov, “Electron-optical system for a large orbit gyrotron,” Tech. Phys. 50(12), 1611–1616 (2005).

    Article  Google Scholar 

  19. S. A. Malygin, V. G. Pavelyev, Sh. E. Tsimring, Izv. VUZ Radiophysika 26(9), 1126 (1983).

    Google Scholar 

  20. V. E. Zapevalov, S. A. Malygin, V. G. Pavelyev, Sh. E. Tsimring, “Coupled resonator gyrotrons with mode conversion,” Izv. VUZ Radiophysika 27(9), 1194–1201 (1984).

    Google Scholar 

  21. S. A. Malygin, “Powerful gyrotron at the 3rd cyclotron harmonic,” Radioteknika i Electronika 31(2), 334 (1986) (in Russian).

    ADS  Google Scholar 

  22. Li Hongfu et al., “35 GHz third-harmonic gyrotron with a permanent magnet system”, Digest of 27th Int. Conf. on Infrared and Millimeter Waves, 2002, pp. 301–302.

  23. M. A. Moiseev, N. A. Zavolsky, and V. E. Zapevalov, “Efficiency enhancement of relativistic gyrotrons,” Int. J. Infrared Millim. Waves 22(6), 813–834 (June 2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Kalynov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratman, V.L., Idehara, T., Kalynov, Y.K. et al. Design of a Powerful and Compact THZ Oscillator. Int J Infrared Milli Waves 27, 1063–1071 (2006). https://doi.org/10.1007/s10762-006-9094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9094-7

Keywords

Navigation