Skip to main content
Log in

LPS-aggravated Ferroptosis via Disrupting Circadian Rhythm by Bmal1/AKT/p53 in Sepsis-Induced Myocardial Injury

  • CORRESPONDENCE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Circadian disruption is involved in the progress of sepsis-induced cardiomyopathy (SICM), one of the leading causes of death in sepsis. The molecular mechanism remains ambiguous. In this study, LPS was used to build SICM model in H9c2 cell. The results suggested that LPS induced cytotoxicity via increasing ferroptosis over the time of course. After screening the expressions of six circadian genes, the circadian swing of Bmal1 was dramatically restrained by LPS in H9c2 cell of SIMC vitro model. PcDNA and siRNA were used to upregulate and downregulate Bmal1 and confirmed that Bmal1 inhibited LPS-triggered ferroptosis in H9c2 cells. Then, the results suggested that AKT/p53 pathway was restrained by LPS in H9c2 cell. Rescue test indicated that Bmal1 inhibited LPS-triggered ferroptosis via AKT/p53 pathway in H9c2 cells. In summary, our findings demonstrated that LPS induced cytotoxicity via increasing ferroptosis over the time of course in H9c2 cells and Bmal1 inhibited this toxicity of LPS via AKT/p53 pathway. Although further studies are needed, our findings may contribute to a new insight to mechanism of SICM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, D.V. Colombara, K.S. Ikuta, N. Kissoon, S. Finfer, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395 (10219): 200–211.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Manetti, A.C., A. Maiese, M.D. Paolo, A. De Matteis, R. La Russa, E. Turillazzi, P. Frati, and V. Fineschi. 2020. MicroRNAs and sepsis-induced cardiac dysfunction: a systematic review. International Journal of Molecular Sciences 22 (1): 321.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tucker, R.V., K. Williams, N. Theyyunni, and C.M. Fung. 2022. Sepsis-induced cardiomyopathy detected with focused cardiac ultrasound in the emergency department. The Journal of Emergency Medicine 63 (4): e91–e99.

    Article  PubMed  Google Scholar 

  4. Higny, J., P. Bulpa, and Y. Berners. 2022. Strain echocardiography in a sepsis-induced cardiomyopathy. Clinical Case Reports 10 (11): e6502.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xiong, X., L. Lu, Z. Wang, J. Ma, Y. Shao, Y. Liu, M. Zhai, P. Jin, J. Yang, Q. Zheng, et al. 2022. Irisin attenuates sepsis-induced cardiac dysfunction by attenuating inflammation-induced pyroptosis through a mitochondrial ubiquitin ligase-dependent mechanism. Biomedicine & Pharmacotherapy 152: 113199.

    Article  CAS  Google Scholar 

  6. Chen, Z., Z. Cao, F. Gui, M. Zhang, X. Wu, H. Peng, B. Yu, W. Li, F. Ai, and J. Zhang. 2022. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice. Cells 11 (19): 2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen, H., K. Xie, M. Li, Q. Yang, and X. Wang. 2022. N(6)-methyladenosine (m(6)A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Discovery 8 (1): 322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, D., C. Wang, X. Liu, N. Liu, S. Zhuang, Q. Zhang, X. Bao, S. Xu, X. Zhou, Q. Meng, et al. 2021. CircN4bp1 facilitates sepsis-induced acute respiratory distress syndrome through mediating macrophage polarization via the miR-138-5p/EZH2 axis. Mediators of Inflammation 2021: 7858746.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, J., Y. Zhang, D. Zhang, and Y. Li. 2021. The role of long non-coding RNAs in sepsis-induced cardiac dysfunction. Frontiers in Cardiovascular Medicine 8: 684348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plack, D.L., O. Royer, E.J. Couture, and C.G.S. Nabzdyk. 2022. Sepsis-induced cardiomyopathy reviewed: the case for early consideration of mechanical support. Journal of cardiothoracic and vascular anesthesia 36 (10): 3916–3926.

    Article  PubMed  Google Scholar 

  11. Lachmann, G., B. Ananthasubramaniam, V.A. Wunsch, L.M. Scherfig, C. von Haefen, C. Knaak, A. Edel, L. Ehlen, B. Koller, A. Goldmann, et al. 2021. Circadian rhythms in septic shock patients. Annals of Intensive Care 11 (1): 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheiermann, C., Y. Kunisaki, and P.S. Frenette. 2013. Circadian control of the immune system. Nature Reviews Immunology 13 (3): 190–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acuna-Fernandez, C., J.S. Marin, M.E. Diaz-Casado, I. Rusanova, B. Darias-Delbey, L. Perez-Guillama, J. Florido-Ruiz, and D. Acuna-Castroviejo. 2020. Daily changes in the expression of clock genes in sepsis and their relation with sepsis outcome and urinary excretion of 6-sulfatoximelatonin. Shock 53 (5): 550–559.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamura, Y., I. Yano, T. Kudo, and S. Shibata. 2010. Time-dependent inhibitory effect of lipopolysaccharide injection on Per1 and Per2 gene expression in the mouse heart and liver. Chronobiology International 27 (2): 213–232.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J.P., S.Y. Cen, Z. Xue, T.X. Wang, Y. Gao, J. Zheng, C. Zhang, J. Hu, S. Nie, Y. Xiong, et al. 2022. Class of disulfide compounds that suppress ferroptosis by stabilizing GPX4. ACS Chemical Biology 17 (12): 3389–3406.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y., Y. Zhang, R. Yao, X. He, L. Zhao, X. Zuo, B. Lu, and Z. Pang. 2022. Ferroptosis-related differentially expressed genes serve as new biomarkers in ischemic stroke and identification of therapeutic drugs. Frontiers in Nutrition 9: 1010918.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, N., W. Wang, H. Zhou, Q. Wu, M. Duan, C. Liu, H. Wu, W. Deng, D. Shen, and Q. Tang. 2020. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radical Biology & Medicine 160: 303–318.

    Article  CAS  Google Scholar 

  18. Hu, J., Y. Xue, K. Tang, J. Fan, J. Du, W. Li, S. Chen, C. Liu, W. Ji, J. Liang, et al. 2019. The protective effects of hydrogen sulfide on the myocardial ischemia via regulating Bmal1. Biomedicine & Pharmacotherapy 120: 109540.

    Article  CAS  Google Scholar 

  19. Wu, C., Z. Shen, Y. Lu, F. Sun, and H. Shi. 2022. p53 promotes ferroptosis in macrophages treated with Fe(3)O(4) nanoparticles. ACS Applied Materials & Interfaces 14 (38): 42791–42803.

    Article  CAS  Google Scholar 

  20. Pei, Y.H., J. Chen, X. Wu, Y. He, W. Qin, S.Y. He, N. Chang, H. Jiang, J. Zhou, P. Yu, et al. 2020. LncRNA PEAMIR inhibits apoptosis and inflammatory response in PM2.5 exposure aggravated myocardial ischemia/reperfusion injury as a competing endogenous RNA of miR-29b-3p. Nanotoxicology 14 (5): 638–653.

    Article  CAS  PubMed  Google Scholar 

  21. Pei, Y.H., J. Chen, L. Xie, X.M. Cai, R.H. Yang, X. Wang, and J.B. Gong. 2016. Hydroxytyrosol protects against myocardial ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Mediators of Inflammation 2016: 1232103.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang, C., H. Wang, G.C.F. Chan, Y. Zhou, X. Lai, and M. Lian. 2020. Extracellular vesicles derived from human umbilical cord mesenchymal stromal cells protect cardiac cells against hypoxia/reoxygenation injury by inhibiting endoplasmic reticulum stress via activation of the PI3K/Akt pathway. Cell Transplantation 29: 963689720945677.

    Article  PubMed  Google Scholar 

  23. Wang, C., H. Liu, Z. Miao, and J. Zhou. 2022. Circadian rhythm regulated by tumor suppressor p53 and time delay in unstressed cells. IEEE/ACM Transactions on Computational Biology and Bioinformatics 19 (3): 1523–1530.

    CAS  PubMed  Google Scholar 

  24. Zhang, Y., A. Devocelle, L. Souza, A. Foudi, S. Tenreira Bento, C. Desterke, R. Sherrard, A. Ballesta, R. Adam, J. Giron-Michel, et al. 2020. BMAL1 knockdown triggers different colon carcinoma cell fates by altering the delicate equilibrium between AKT/mTOR and P53/P21 pathways. Aging (Albany NY) 12 (9): 8067–8083.

    Article  CAS  PubMed  Google Scholar 

  25. Ko, M.L., K. Jian, L. Shi, and G.Y. Ko. 2009. Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. Journal of Neurochemistry 108 (6): 1607–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung, C.H., E.M. Kim, J.K. Park, S.G. Hwang, S.K. Moon, W.J. Kim, and H.D. Um. 2013. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncology Reports 29 (6): 2109–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, R., Y. Sun, Z. Chen, Y. Yao, and G. Ma. 2016. Hypoxic preconditioning inhibits hypoxia-induced apoptosis of cardiac progenitor cells via the PI3K/Akt-DNMT1-p53 pathway. Science and Reports 6: 30922.

    Article  CAS  Google Scholar 

  28. Malcolm, M., L. Saad, L.G. Penazzi, and E. Garbarino-Pico. 2019. Processing bodies oscillate in neuro 2A cells. Frontiers in Cellular Neuroscience 13: 487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, W.L., S. Liu, N. Li, L.F. Ye, M. Zha, C.Y. Li, Y. Zhao, Q. Pu, J.J. Bao, X.J. Chen, et al. 2021. Quercetin antagonizes glucose fluctuation induced renal injury by inhibiting aerobic glycolysis via HIF-1alpha/miR-210/ISCU/FeS pathway. Frontiers in Medicine 8: 656086.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui, S., K. Niu, Y. Xie, S. Li, W. Zhu, L. Yu, and H. Tan. 2022. Screening of potential key ferroptosis-related genes in sepsis. PeerJ 10: e13983.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lei, X.L., G.Y. Zhao, R. Guo, and N. Cui. 2022. Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Frontiers in Immunology 13: 956361.

    Article  CAS  Google Scholar 

  32. Boeddha, N.P., G.J. Driessen, M.H. Cnossen, J.A. Hazelzet, and M. Emonts. 2016. Circadian variation of plasminogen-activator-inhibitor-1 levels in children with meningococcal sepsis. PLoS ONE 11 (11): e0167004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Truong, K.K., M.T. Lam, M.A. Grandner, C.S. Sassoon, and A. Malhotra. 2016. Timing matters: circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer. Annals of the American Thoracic Society 13 (7): 1144–1154.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, Q., Z. Chen, C. Yang, L. Wang, J. Ma, T. He, H. Li, and Z. Quan. 2022. Role of ferroptosis-associated genes in ankylosing spondylitis and immune cell infiltration. Frontiers in Genetics 13: 948290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J., Y. Zheng, Y. Wang, J. Wang, A. Sang, X. Song, and X. Li. 2022. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. Frontiers in Immunology 13: 884362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Q., L. Liu, and S. Ni. 2022. Screening of ferroptosis-related genes in sepsis-induced liver failure and analysis of immune correlation. PeerJ 10: e13757.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qiu, W., S. An, T. Wang, J. Li, B. Yu, Z. Zeng, Z. Chen, B. Lin, X. Lin, and Y. Gao. 2022. Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. International Immunopharmacology 112: 109162.

    Article  CAS  PubMed  Google Scholar 

  38. Madrid-Navarro, C.J., R. Sanchez-Galvez, A. Martinez-Nicolas, R. Marina, J.A. Garcia, J.A. Madrid, and M.A. Rol. 2015. Disruption of circadian rhythms and delirium, sleep impairment and sepsis in critically ill patients. Potential therapeutic implications for increased light-dark contrast and melatonin therapy in an ICU environment. Current Pharmaceutical Design 21 (24): 3453–3468.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshioka, H., S. Tominaga, M. Nishikawa, Y. Shinohara, M. Nakao, M. Yoshikawa, T. Maeda, and N. Miura. 2021. Different renal chronotoxicity of bromobenzene and its intermediate metabolites in mice. Biological and Pharmaceutical Bulletin 44 (1): 150–153.

    Article  CAS  PubMed  Google Scholar 

  40. Mul Fedele, M.L., C.A. Senna, I. Aiello, D.A. Golombek, and N. Paladino. 2021. Circadian rhythms in bacterial sepsis pathology: what we know and what we should know. Frontiers in Cellular and Infection Microbiology 11: 773181.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, J., G. Malkani, X. Shi, M. Meyer, S. Cunningham-Runddles, X. Ma, and Z.S. Sun. 2006. The circadian clock period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infection and Immunity 74 (8): 4750–4756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heipertz, E.L., J. Harper, C.A. Lopez, E. Fikrig, M.E. Hughes, and W.E. Walker. 2018. Circadian rhythms influence the severity of sepsis in mice via a TLR2-dependent, leukocyte-intrinsic mechanism. The Journal of Immunology 201 (1): 193–201.

    Article  CAS  PubMed  Google Scholar 

  43. Geiger, S.S., J. Traba, N. Richoz, T.K. Farley, S.R. Brooks, F. Petermann, L. Wang, F.J. Gonzalez, M.N. Sack, and R.M. Siegel. 2021. Feeding-induced resistance to acute lethal sepsis is dependent on hepatic BMAL1 and FXR signalling. Nature Communications 12 (1): 2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curtis, A.M., C.T. Fagundes, G. Yang, E.M. Palsson-McDermott, P. Wochal, A.F. McGettrick, N.H. Foley, J.O. Early, L. Chen, H. Zhang, et al. 2015. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proceedings of the National Academy of Sciences 112 (23): 7231–7236.

    Article  CAS  Google Scholar 

  45. Yang, M., P. Chen, J. Liu, S. Zhu, G. Kroemer, D.J. Klionsky, M.T. Lotze, H.J. Zeh, R. Kang, and D. Tang. 2019. Clockophagy is a novel selective autophagy process favoring ferroptosis. Science Advances 5 (7): eaaw2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Y., H. Tang, J. Zheng, and K. Yang. 2022. The PER1/HIF-1alpha negative feedback loop promotes ferroptosis and inhibits tumor progression in oral squamous cell carcinoma. Translational Oncology 18: 101360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y., Y. Wang, J. Liu, R. Kang, and D. Tang. 2020. The circadian clock protects against ferroptosis-induced sterile inflammation. Biochemical and Biophysical Research Communications 525 (3): 620–625.

    Article  CAS  PubMed  Google Scholar 

  48. Beker, M.C., B. Caglayan, A.B. Caglayan, T. Kelestemur, E. Yalcin, A. Caglayan, U. Kilic, A.T. Baykal, R.J. Reiter, and E. Kilic. 2019. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Science and Reports 9 (1): 19082.

    Article  CAS  Google Scholar 

  49. Li, S., Z. Lei, X. Yang, M. Zhao, Y. Hou, D. Wang, S. Tang, J. Li, and J. Yu. 2022. Propofol protects myocardium from ischemia/reperfusion injury by inhibiting ferroptosis through the AKT/p53 signaling pathway. Frontiers in Pharmacology 13: 841410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, L.J., W. Qiao, Y.J. Xiao, L. Cui, X. Wang, and W.D. Ren. 2019. Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-kappaB pathway. International Immunopharmacology 75: 105782.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, L., B. Li, W. Li, J. Jiang, W. Chen, H. Yang, and D. Pan. 2022. miR-107 attenuates sepsis-induced myocardial injury by targeting PTEN and activating the PI3K/AKT signaling pathway. Cells Tissues Organs.

  52. Zhang, H., X. Wu, Y. Tao, and G. Lu. 2022. Berberine attenuates sepsis-induced cardiac dysfunction by upregulating the Akt/eNOS pathway in mice. Experimental and Therapeutic Medicine 23 (6): 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yarmohammadi, F., Z. Ebrahimian, and G. Karimi. 2022. MicroRNAs target the PI3K/Akt/p53 and the Sirt1/Nrf2 signaling pathways in doxorubicin-induced cardiotoxicity. Journal of Biochemical and Molecular Toxicology 37: e23261.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the participants for their time and effort.

Funding

This study was supported by the National Natural Science Foundation of China (grant nos. 81, 700, 243) and the subject of Jiangsu Province Hospital of Chinese Medicine (grant no. Y2020CX42).

Author information

Authors and Affiliations

Authors

Contributions

LH, JF, and LKQ: conceptualization. LH, JF, LKQ, ZYT, YW, and ZLH: methodology and investigation. PYH: writing–review and editing. ZJG and PYH: supervision and project administration.

Corresponding authors

Correspondence to Jian-gao Zhao or Ying-hao Pei.

Ethics declarations

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hao Lin, Fang Ji, and Kong-qin Lin contributed equally to this work and share first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 55 KB)

Supplementary file2 (JPG 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Ji, F., Lin, Kq. et al. LPS-aggravated Ferroptosis via Disrupting Circadian Rhythm by Bmal1/AKT/p53 in Sepsis-Induced Myocardial Injury. Inflammation 46, 1133–1143 (2023). https://doi.org/10.1007/s10753-023-01804-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01804-7

KEY WORDS

Navigation