Skip to main content

Advertisement

Log in

Emerging Role of LncRNAs in Autoimmune Lupus

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs that have been considered as one of the largest and diverse RNA families. lncRNAs participate in dysregulation of post-transcriptional process by both RNA and protein interactions. This group of RNAs also plays essential roles in various cellular activities, such as differentiation, proliferation, and apoptosis. Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease, and evidence has suggested that many lncRNAs are involved in SLE pathogenesis, for instance, several lncRNAs were aberrantly expressed in SLE patients. Moreover, since post-transcriptional process by lncRNAs significantly performs in contributing to lupus progression, it is desirable to continue expanding the search for lncRNAs impacting on lupus development by post-transcriptional mechanisms. Highlighting the implication of lncRNAs in regulation of different immune cells through signaling pathways that have participated in SLE is of importance. Therefore, in this review, we summarized recent advances in lncRNAs and SLE. Hopefully, collection of the information will be better to comprehensively understand the relation of SLE and lncRNAs, and will have potential for investigating target for SLE regarding lncRNAs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

The material used during the current study is available from the corresponding author on reasonable request.

References

  1. Kamitaki, N., A. Sekar, R.E. Handsaker, H. de Rivera, K. Tooley, D.L. Morris, K.E. Taylor, C.W. Whelan, P. Tombleson, L.M.O. Loohuis, and M. Boehnke. 2020. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582: 577–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, L.H., B. Xiao, M. Zhong, Q. Li, J.Y. Chen, J.R. Huang, and H. Rao. 2020. LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-kappaB axis in lupus nephritis. Cell and Tissue Research 382: 627–638.

    Article  CAS  PubMed  Google Scholar 

  3. Zou, Y., and H. Xu. 2020. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. Journal of Translational Autoimmunity (3):100044.

  4. Zhao, C.N., Y.M. Mao, L.N. Liu, X.M. Li, D.G. Wang, and H.F. Pan. 2018. Emerging role of lncRNAs in systemic lupus erythematosus. Biomedicine and Pharmacotherapy 106: 584–592.

    Article  CAS  PubMed  Google Scholar 

  5. Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. The protection of NF-kappaB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung Journal of Medical Sciences 36: 354–362.

    Article  CAS  Google Scholar 

  6. Lodde, V., G. Murgia, E.R. Simula, M. Steri, M. Floris, and M.L. Idda. 2020. Long noncoding RNAs and circular RANs in autoimmune diseases. Biomolecules 10: 1044.

    Article  CAS  PubMed Central  Google Scholar 

  7. Geng, L.Y., X. Xu, H.Y. Zhang, C. Chen, Y.Y. Hou, G.H. Yao, S.Y. Wang, D.D. Wang, X.B. Feng, L.Y. Sun, and J. Liang. 2020. Comprehensive expression profile of long non-coding RNAs in peripheral blood mononuclear cells from patients with neuropsychiatric systemic lupus erythematosus. Annals of Translational Medicine 8: 349.

  8. Wang, J.B., J. Li, T.P. Zhang, T.T. Lv, L.J. Li, J. Wu, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2019. Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Advances in Medical Sciences 64: 430–436.

    Article  PubMed  Google Scholar 

  9. Xu, Y., W. Deng, and W. Zhang. 2018. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomedicine and Pharmacotherapy 104: 509–519.

    Article  CAS  PubMed  Google Scholar 

  10. Teimuri, S., A. Hosseini, A. Rezaenasab, K. Ghaedi, E. Ghoveud, M. Etemadifar, M.H. Nasr-Esfahani, and T.L. Megraw. 2018. Integrative analysis of lncRNAs in Th17 cell lineage to discover new potential biomarkers and therapeutic targets in autoimmune diseases. Molecular Therapy Nucleic Acids 12: 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeni, P.F., and M. Mraz. 2021. LncRNAs in adaptive immunity: Role in physiological and pathological conditions. RNA Biology 18: 619–632.

    Article  CAS  PubMed  Google Scholar 

  12. Xin, J., J. Li, Y. Feng, L. Wang, Y. Zhang, and R. Yang. 2017. Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960. OncoTargets and Therapy 10: 1307–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, P., Y. Xue, Y. Han, L. Lin, C. Wu, S. Xu, Z. Jiang, J. Xu, Q. Liu, and X. Cao. 2014. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344: 310–313.

    Article  CAS  PubMed  Google Scholar 

  14. Ranzani, V., G. Rossetti, I. Panzeri, A. Arrigoni, R.J. Bonnal, S. Curti, P. Gruarin, E. Provasi, E. Sugliano, M. Marconi, and R. De Francesco. 2015. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology 16: 318–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, G., Q. Tang, S. Sharma, F. Yu, T.M. Escobar, S.A. Muljo, J. Zhu, and K. Zhao. 2013. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature Immunology 14: 1190–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spurlock, C.F., J.T. Tossberg, Y. Guo, S.P. Collier, P.S. Crooke, and T.M. Aune. 2015. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nature Communications 6: 6932.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, Y.Z., S.S. Li, Z.J. Zhang, X.H. Yu, and J.F. Zheng. 2018. The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Frontiers of Medicine (Lausanne) 5: 193.

    Article  Google Scholar 

  18. Luo, Q., X. Li, C. Xu, L. Zeng, J. Ye, Y. Guo, Z. Huang, and J. Li. 2018. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus. Molecular Medicine Reports 17: 3489–3496.

    CAS  PubMed  Google Scholar 

  19. Ying, H., Y. Wang, Z. Gao, and Q. Zhang. 2019. Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. International Immunopharmacology 69: 313–320.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, Y., X. Yan, Y. Yang, and X. Ma. 2019. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomedicine and Pharmacotherapy 109: 1569–1577.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, H. C., K. Y. Huang, M. C. Lu, H. Y. Huang Tseng, S. Q. Liu, N. S. Lai, and H. B. Huang. 2021. Down-regulation of LOC645166 in T cells of ankylosing spondylitis patients promotes the NF-kappab signaling via decreasingly blocking recruitment of the IKK complex to K63-linked polyubiquitin chains. Frontiers in Immunology (12):591706.

  22. Li, L.J., W. Zhao, S.S. Tao, J. Li, S.Z. Xu, J.B. Wang, R.X. Leng, Y.G. Fan, H.F. Pan, and D.Q. Ye. 2017. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cellular Immunology 319: 17–27.

    Article  CAS  PubMed  Google Scholar 

  23. Cai, B., J. Cai, Z. Yin, X. Jiang, C. Yao, J. Ma, Z. Xue, P. Miao, Q. Xiao, Y. Cheng, J. Qin, Q. Guo, N. Shen, Z. Ye, B. Qu, and H. Ding. 2021. Long non-coding RNA expression profiles in neutrophils revealed potential biomarker for prediction of renal involvement in SLE patients. Rheumatology (Oxford) 60 (4): 1734–1746.

    Article  CAS  Google Scholar 

  24. Xu, F., L. Jin, Y. Jin, Z. Nie, and H. Zheng. 2019. Long noncoding RNAs in autoimmune diseases. Journal of Biomedical Materials Research: Part A 107: 468–475.

    Article  CAS  Google Scholar 

  25. Yang, J., Y. Li, L. Wang, Z. Zhang, Z. Li, and Q. Jia. 2020. LncRNA H19 aggravates TNF-alpha-induced inflammatory injury via TAK1 pathway in MH7A cells. BioFactors 46: 813–820.

    Article  CAS  PubMed  Google Scholar 

  26. Stuhlmüller, B., E. Kunisch, J.L. Franz, L. Martinez-Gamboa, M.M. Hernandez, A. Pruss, N. Ulbrich, V.A. Erdmann, G.R. Burmester, and R.W. Kinne. 2003. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. American Journal of Pathology 163: 901–911.

    Article  Google Scholar 

  27. Ke, Z. Q., J. W. Lu, J. T. Zhu, Z. W. Yang, Z. X. Jin, and L. Y. Yuan. 2020. Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling pathway. Infection, Genetics and Evolution (77):104077.

  28. Zhang, H.J., Q.F. Wei, S.J. Wang, H.J. Zhang, X.Y. Zhang, Q. Geng, Y.H. Cui, and X.H. Wang. 2017. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-kappaB pathway. International Immunopharmacology 50: 283–290.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y., Y. Wu, L. Yang, X. Dou, J. Jiang, and L. Wang. 2019. Long non-coding RNA activated by transforming growth factor-β promotes proliferation and invasion of cervical cancer cells by regulating the miR-144/ITGA6 axis. Experimental Physiology 6: 837–844.

    Article  CAS  Google Scholar 

  30. Shi, S.J., L.J. Wang, B. Yu, Y.H. Li, Y. Jin, and X.Z. Bai. 2015. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 13: 11652–11663.

    Article  Google Scholar 

  31. Yue, B., S. Qiu, S. Zhao, C. Liu, D. Zhang, F. Yu, Z. Peng, and D. Yan. 2016. LncRNA-ATB mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis. Journal of Gastroenterology and Hepatology 3: 595–603.

    Article  CAS  Google Scholar 

  32. Tang, F., H. Wang, E. Chen, E. Bian, Y. Xu, X. Ji, Z. Yang, X. Hua, Y. Zhang, and B. Zhao. 2019. LncRNA-ATB promotes TGF-beta-induced glioma cells invasion through NF-kappaB and P38/MAPK pathway. Journal of Cellular Physiology 234: 23302–23314.

    Article  CAS  PubMed  Google Scholar 

  33. Roux, B.T., J.A. Heward, L.E. Donnelly, S.W. Jones, and M.A. Lindsay. 2017. Catalog of differentially expressed long non-coding RNA following activation of human and mouse innate immune response. Frontiers in Immunology 8: 1038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Robinson, E. K., S. Covarrubias, and S. Carpenter. 2020. The how and why of lncRNA function: an innate immune perspective. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms (1863):194419.

  35. Wang, Z., and Y. Zheng. 2018. LncRNAs regulate innate immune responses and their roles in macrophage polarization. Mediators of Inflammation 2018: 8050956.

    PubMed  PubMed Central  Google Scholar 

  36. Ma, S.B., Z.P. Ming, A.Y. Gong, Y. Wang, X.Q. Chen, G.K. Hu, R. Zhou, A. Shibata, P.C. Swanson, and X.M. Chen. 2016. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. FASEB Journal 31: 1215–1225.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, F., L. Wu, J. Qian, B. Qu, S. Xia, T. La, Y. Wu, J. Ma, J. Zeng, Q. Guo, and Y. Cui. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96–104.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, C.A., J.P. Li, J.C. Yen, I.L. Lai, Y.C. Ho, Y.C. Chen, J.L. Lan, and J.G. Chang. 2018. LncRNA NTT/PBOV1 axis promotes monocyte differentiation and is elevated in rheumatoid arthritis. International Journal of Molecular Sciences 19: 2806.

    Article  PubMed Central  CAS  Google Scholar 

  39. NE, I. I., J. A. Heward, B. Roux, E. Tsitsiou, P. S. Fenwick, L. Lenzi, I. Goodhead, C. Hertz-Fowler, A. Heger, N. Hall, and L. E. Donnelly. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nature Communications (5):3979.

  40. Taheri, M., R. Eghtedarian, M.E. Dinger, and S. Ghafouri-Fard. 2020. Exploring the role of non-coding RNAs in the pathophysiology of systemic lupus erythematosus. Biomolecules 10: 937.

    Article  CAS  PubMed Central  Google Scholar 

  41. Hu, X.J., S. Goswami, J. Qiu, Q. Chen, S. Laverdure, B.T. Sherman, and T. Imamichi. 2019. Profiles of long non-coding RNAs and mRNA expression in human macrophages regulated by interleukin-27. International Journal of Molecular Sciences 20: 6207.

    Article  CAS  PubMed Central  Google Scholar 

  42. Nakayama, Y., K. Fujiu, R. Yuki, Y. Oishi, M.S. Morioka, T. Isagawa, J. Matsuda, T. Oshima, T. Matsubara, J. Sugita, and F. Kudo. 2020. A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation. Proceedings of the National Academy of Sciences of the United States of America 117: 14365–14375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scacalossi, K.R., C. van Solingen, and K.J. Moore. 2019. Long non-coding RNAs regulating macrophage functions in homeostasis and disease. Vascular Pharmacology 114: 122–130.

    Article  CAS  PubMed  Google Scholar 

  44. Hu, G. k., A. Y. Gong, Y. Wang, S. B. Ma, X. Q. Chen, J. Chen, C. J. Su, A. Shibata, J. K. Strauss-Soukup, K. M. Drescher, and X. M. Chen. 2016. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. Journal of Immunology (196):2799–2808.

  45. Zgheib, C., M. M. Hodges, J. Hu, K. W. Liechty, and J. Xu. 2017. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages. PloS One (12):e0177453.

  46. Zhuang, L., J. Tian, X. Zhang, H. Wang, and C. Huang. 2018. Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells. Cellular & Molecular Biology Letters 23: 43.

    Article  CAS  Google Scholar 

  47. Li, Z., Q. Zhang, Y. Wu, F. Hu, L. Gu, T. Chen, and W. Wang. 2018. LncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell-conditioned dendritic cells. Experimental and Therapeutic Medicine 16: 3951–3958.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang, T.P., B.Q. Zhu, S.S. Tao, Y.G. Fan, X.M. Li, H.F. Pan, and D.Q. Ye. 2019. Long non-coding RNAs genes polymorphisms and their expression levels in patients with rheumatoid arthritis. Frontiers in immunology 2019 (10): 2529.

    Article  CAS  Google Scholar 

  49. Liu, W., Z. Wang, L. Liu, Z. Yang, S. Liu, Z. Ma, Y. Liu, Y. Ma, L. Zhang, X. Zhang, and M. Jiang. 2020. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America 117: 23695–23706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, J.H., S.W. Wang, S.N. Jia, G.P. Ding, G.X. Jiang, and L.P. Cao. 2018. Integrated analysis of long non-coding RNA and mRNA expression profile in pancreatic cancer derived exosomes treated dendritic cells by microarray analysis. Journal of Cancer 9: 21–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu, J., X. M. Zhang, K. Chen, Y. J. Cheng, S. X. Liu, M. Xia, Y. L. Chen, H. Zhu, Z. Q. Li, and X. T. Cao. 2019. CCR7 chemokine receptor-inducible lnc-dpf3 restrains dendritic cell migration by inhibiting HIF-1alpha-mediated glycolysis. Immunity (50):600–615 e615.

  52. Zhou, Y., L.N. Gu, J. Zhang, J. Pan, J.M. Zhang, D.Y. Zhao, and F. Liu. 2020. LncRNA-AK149641 regulates the secretion of tumor necrosis factor-alpha in P815 mast cells by targeting the nuclear factor-kappa B signaling pathway. Scientific Reports 10: 16655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang, Y., S. Huang, L. Qiao, X. Peng, C. Li, K. Lin, G. Xie, J. Li, L. Lin, Y. Yin, and H. Liao. 2020. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells. Journal of Extracellular Vesicles 9: 1697583.

    Article  CAS  PubMed  Google Scholar 

  54. Li, L., Q. Dang, H. Xie, Z. Yang, D. He, L. Liang, W. Song, S. Yeh, and C. Chang. 2015. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget 7: 83828.

    Article  Google Scholar 

  55. Roy, S., and A. Awasthi. 2019. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. International Reviews of Immunology 38: 232–245.

    Article  CAS  PubMed  Google Scholar 

  56. Williams, G.T., M. Mourtada-Maarabouni, and F. Farzaneh. 2011. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochemical Society Transactions 39: 482–486.

    Article  CAS  PubMed  Google Scholar 

  57. Li, J., J. Tian, J. Lu, Z. Wang, J. Ling, X. Wu, F. Yang, and Y. Xia. 2020. LncRNA GAS5 inhibits Th17 differentiation and alleviates immune thrombocytopenia via promoting the ubiquitination of STAT3. International Immunopharmacology (80):106127.

  58. Mourtada-Maarabouni, M., A.M. Hasan, F. Farzaneh, and G.T. Williams. 2010. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology 78: 19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, F., G. Liu, C. Wei, C. Gao, and J. Hao. 2017. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB Journal 31: 519–525.

    Article  CAS  PubMed  Google Scholar 

  60. Koh, B.H., S.S. Hwang, J.Y. Kim, W. Lee, M.J. Kang, C.G. Lee, J.W. Park, R.A. Flavell, and G.R. Lee. 2010. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proceedings of the National Academy of Sciences of the United States of America 107: 10614–10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hwang, S.S., K. Kim, and G.R. Lee. 2011. Defective GATA-3 expression in Th2 LCR-deficient mice. Biochemical and Biophysical Research Communications 410: 866–871.

    Article  CAS  PubMed  Google Scholar 

  62. Willingham, A.T., A.P. Orth, S. Batalov, E.C. Peters, B.G. Wen, P. Aza-Blanc, J.B. Hogenesch, and P.G. Schultz. 2005. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309: 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, J.U., L.K. Kim, and J.M. Choi. 2018. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Frontiers in Immunology 9: 2747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sharma, S., G.M. Findlay, H.S. Bandukwala, S. Oberdoerffer, B. Baust, Z. Li, V. Schmidt, P.G. Hogan, D.B. Sacks, and A. Rao. 2011. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proceedings of the National Academy of Sciences of the United States of America 108: 11381–11386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsao, H.W., T.S. Tai, W. Tseng, H.H. Chang, R. Grenningloh, S.C. Miaw, and I.C. Ho. 2013. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proceedings of the National Academy of Sciences of the United States of America 110: 15776–15781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, J., L. Ao, and J. Yang. 2019. Long non-coding RNAs in diseases related to inflammation and immunity. Annals of Translational Medicine 7: 494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sigdel, K. R., A. Cheng, Y. Wang, L. H. Duan, and Y. L. Zhang. 2015. The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. Journal of Immunology Research (2015):848790.

  68. Brazao, T.F., J.S. Johnson, J. Muller, A. Heger, C.P. Ponting, and V.L. Tybulewicz. 2016. Long noncoding RNAs in B-cell development and activation. Blood 128: e10-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sehgal, L., R. Mathur, F.K. Braun, J.F. Wise, Z. Berkova, S. Neelapu, L.W. Kwak, and F. Samaniego. 2014. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia 28: 2376–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, S., C. Li, J. Zhang, X. Tan, J. Deng, R. Jiang, Y. Li, Y. Piao, C. Li, W. Yang, and W. Mo. 2019. Expression profile of long noncoding RNAs in children with systemic lupus erythematosus: A microarray analysis. Clinical and Experimental Rheumatology 37: 156–163.

    PubMed  Google Scholar 

  71. Dong, G. J., Y. H. Yang, X. H. Li, X. Y. Yao, Y. Z. Zhu, H. Zhang, H. Y. Wang, Q. Ma, J. F. Zhang, H. Shi, and Z. C. Ning. 2020. Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (1866):165554.

  72. Xu, H., W. Chen, F. Zheng, D. Tang, D. Liu, G. Wang, Y. Xu, L. Yin, X. Zhang, and Y. Dai. 2020. Reconstruction and analysis of the aberrant lncRNA–miRNA–mRNA network in systemic lupus erythematosus. Lupus 29: 398–406.

    Article  CAS  PubMed  Google Scholar 

  73. Wu, G.C., J. Li, R.X. Leng, X.P. Li, X.M. Li, D.G. Wang, H.F. Pan, and D.Q. Ye. 2017. Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8: 23650–23663.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li, J., G.C. Wu, T.P. Zhang, X.K. Yang, S.S. Chen, L.J. Li, S.Z. Xu, T.T. Lv, R.X. Leng, H.F. Pan, and D.Q. Ye. 2017. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Scientific Reports 7: 15119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen, Y.H., Y.Q. Chen, B.B. Zu, J. Liu, L. Sun, C. Ding, D.P. Wang, X. Cheng, D.L. Yang, and G.P. Niu. 2020. Identification of long noncoding RNAs Lnc-DC in plasma as a new biomarker for primary Sjogren’s syndrome. Journal of Immunology Research 2020: 9236234.

    PubMed  PubMed Central  Google Scholar 

  76. Liu, C.H., Y.L. Lu, H.T. Huang, C.F. Wang, H.C. Luo, G.J. Wei, M. Lei, T. Tan, Y. Wang, Y.Y. Huang, and Y.S. Wei. 2021. Association of LncRNA-GAS5 gene polymorphisms and PBMC LncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population. Journal of Cellular and Molecular Medicine 25: 3548–3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, Q., Y. Deng, C.Y. Li, H.X. Xie, Q.S. Liu, S. Ming, D.Y. Wu, and F.Q. Luo. 2020. LncRNA GAS5 suppresses CD4(+) T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus. Immunology Letters 227: 41–47.

    Article  CAS  PubMed  Google Scholar 

  78. Mayama, T., A.K. Marr, and T. Kino. 2016. Differential expression of glucocorticoid receptor noncoding RAN repressor Gas5 in autoimmune and inflammatory diseases. Hormone and Metabolic Research 48: 550–557.

    Article  CAS  PubMed  Google Scholar 

  79. Suo, Q.F., J. Sheng, F.Y. Qiang, Z.S. Tang, and Y.Y. Yang. 2018. Association of long non-coding RNA GAS5 and miR-21 levels in CD4(+) T cells with clinical features of systemic lupus erythematosus. Experimental and Therapeutic Medicine 15: 345–350.

    CAS  PubMed  Google Scholar 

  80. Wu, G.C., Y. Hu, S.Y. Guan, D.Q. Ye, and H.F. Pan. 2019. Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomolecules 9: 206.

    Article  CAS  PubMed Central  Google Scholar 

  81. Cao, H.Y., D. Li, Y.P. Wang, H.X. Lu, J. Sun, and H.B. Li. 2020. Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. International Journal of Rheumatic Diseases 23: 428–434.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, Y., F. Zhang, J. Ma, X. Zhang, L. Wu, B. Qu, S. Xia, S. Chen, Y. Tang, and N. Shen. 2015. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Research & Therapy 17: 131.

    Article  CAS  Google Scholar 

  83. Chen, J., S. Ke, L. Zhong, J. Wu, A. Tseng, B. Morpurgo, A. Golovko, G. Wang, J.J. Cai, X. Ma, and D. Li. 2018. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochemical Pharmacology 152: 94–103.

    Article  CAS  PubMed  Google Scholar 

  84. Yang, H.X., N.X. Liang, M. Wang, Y.Y. Fei, J. Sun, Z.Y. Li, Y. Xu, C. Guo, Z.L. Cao, S.Q. Li, and Y.C. Jiao. 2017. Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget 8: 77400–77406.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gao, F., Y. Tan, and H. Luo. 2020. MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL. Brazilian Journal of Medical and Biological Research (53):e9292.

  86. Li, L., X. Zuo, D. Liu, H. Luo, H. Zhu. 2021. The functional roles of RNAs cargoes released by neutrophil-derived exosomes in dermatomyositis. Frontiers in Pharmacology 12:727901.

Download references

Acknowledgements

We confirm that the manuscript has been read and approved by all named authors.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81701606).

Author information

Authors and Affiliations

Authors

Contributions

Wangdong Xu: design of the study, supervision, review, and editing. Qian Wu: literature retrieval and utilization and writing (original drafting). Anfang Huang: review and approve the manuscript.

Corresponding author

Correspondence to Anfang Huang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

The authors grant the publisher permission to publish the work in Inflammation.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wangdong Xu and Qian Wu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wu, Q. & Huang, A. Emerging Role of LncRNAs in Autoimmune Lupus. Inflammation 45, 937–948 (2022). https://doi.org/10.1007/s10753-021-01607-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01607-8

Keywords

Navigation