Skip to main content

Advertisement

Log in

Circular RNA circHIPK3 Activates Macrophage NLRP3 Inflammasome and TLR4 Pathway in Gouty Arthritis via Sponging miR-561 and miR-192

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Increasing evidences indicate that circular RNAs (circRNAs) play important roles in regulating gene expressions in various diseases. However, the role of circRNAs in inflammatory response of gouty arthritis remains unknown. This study aims to investigate the role and underlying mechanism of circHIPK3 in inflammatory response of gouty arthritis. Quantitative real-time PCR was used to detect the expressions of circHIPK3, miR-192 and miR-561. Western blot was used to detect the protein levels of TLR4, NLRP3, nuclear factor-κB (NF-κB) related proteins, and Caspase-1. Dual luciferase reporter assay, RNA pull-down assay, and FISH assay were used to confirm the interaction between circHIPK3 and miR-192/miR-561. ELISA was used to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels. circHIPK3 was elevated in synovial fluid mononuclear cells (SFMCs) from patients with gouty arthritis and monosodium urate (MSU)-stimulated THP-1 cells. circHIPK3 overexpression promoted the inflammatory cytokines levels in MSU-stimulated THP-1 cells, and circHIPK3 silencing obtained the opposite effect. Mechanistically, circHIPK3 sponged miR-192 and miR-561, and subsequently promoted the expressions of miR-192 and miR-561 target gene TLR4 and NLRP3. In vivo experiments confirmed circHIPK3 knockdown suppressed gouty arthritis. circHIPK3 sponges miR-192 and miR-561 to promote TLR4 and NLRP3 expressions, thereby promoting inflammatory response in gouty arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dalbeth, N., T.R. Merriman, and L.K. Stamp. 2016. Gout. Lancet 388 (10055): 2039–2052.

    Article  CAS  Google Scholar 

  2. Major, T.J., N. Dalbeth, E.A. Stahl, and T.R. Merriman. 2018. An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology 14 (6): 341–353.

    Article  CAS  Google Scholar 

  3. Luo, Y., et al. 2018. Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology (Oxford).

  4. Kuo, C., et al. 2015. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11 (11): 649–662.

    Article  Google Scholar 

  5. Han, Q., W. Bing, Y. di, L. Hua, L. Shi-he, Z. Yu-hua, H. Xiu-guo, W. Yu-gang, F. Qi-ming, Y. Shih-mo, and T. Ting-ting. 2016. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells. Cell death & disease 7 (9): e2350–e2350.

    Article  Google Scholar 

  6. Yang, Q.-B., Y.L. He, Q.B. Zhang, Q.S. Mi, and J.G. Zhou. 2019. Downregulation of transcription factor T-bet as a protective strategy in monosodium urate-induced gouty inflammation. Frontiers in immunology 10: 1199–1199.

    Article  CAS  Google Scholar 

  7. Martinon, F., V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440 (7081): 237–241.

    Article  CAS  Google Scholar 

  8. So, A.K., and F. Martinon. 2017. Inflammation in gout: mechanisms and therapeutic targets. Nature Reviews Rheumatology 13: 639–647.

    Article  CAS  Google Scholar 

  9. Shi, Y., A.D. Mucsi, and G. Ng. 2010. Monosodium urate crystals in inflammation and immunity. Immunological Reviews 233 (1): 203–217.

    Article  CAS  Google Scholar 

  10. Guo, H., J.B. Callaway, and J.P.Y. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine 21 (7): 677–687.

    Article  Google Scholar 

  11. Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature reviews. Immunology 13 (6): 397–411.

    Article  CAS  Google Scholar 

  12. Liu, Y.-F., et al. 2014. Effects of modified Simiao decoction on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Evid Based Complement Alternat Med 2014 (3): 1–7.

    CAS  Google Scholar 

  13. Liu, Y.-F., et al. 2016. Effects of berberine on NLRP3 and IL-1β expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. BioMed research international 2016: 2503703–2503703.

    PubMed  PubMed Central  Google Scholar 

  14. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124 (4): 783–801.

    Article  CAS  Google Scholar 

  15. Stephens, M., S. Liao, and P.-Y. von der Weid. 2019. Mesenteric lymphatic alterations observed during DSS induced intestinal inflammation are driven in a TLR4-PAMP/DAMP discriminative manner. Frontiers in immunology 10: 557–557.

    Article  CAS  Google Scholar 

  16. Rossato, M.F., C. Hoffmeister, G. Trevisan, F. Bezerra, T.M. Cunha, J. Ferreira, and C.R. Silva. 2019. Monosodium urate crystal interleukin-1beta release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation. Rheumatology (Oxford).

  17. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.

    Article  CAS  Google Scholar 

  18. Qing, Y.-F., Q.B. Zhang, J.G. Zhou, and L. Jiang. 2014. Changes in toll-like receptor (TLR)4–NFκB–IL1β signaling in male gout patients might be involved in the pathogenesis of primary gouty arthritis. Rheumatology International 34 (2): 213–220.

    Article  CAS  Google Scholar 

  19. WR, J., et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, N.Y.), 2013. 19(2): p. 141-57.

  20. Hansen, T.B., J. Kjems, and C.K. Damgaard. 2013. Circular RNA and miR-7 in cancer. Cancer Res 73 (18): 5609–5612.

    Article  CAS  Google Scholar 

  21. Rossbach, O. 2019. Artificial circular RNA sponges targeting microRNAs as a novel tool in molecular biology. Mol Ther Nucleic Acids 17: 452–454.

    Article  CAS  Google Scholar 

  22. Li, Y., F. Zheng, X. Xiao, F. Xie, D. Tao, C. Huang, D. Liu, M. Wang, L. Wang, F. Zeng, and G. Jiang. 2017. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO reports 18 (9): 1646–1659.

    Article  CAS  Google Scholar 

  23. Chen, G., Y. Shi, M. Liu, and J. Sun. 2018. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell death & disease 9 (2): 175–175.

    Article  Google Scholar 

  24. Zeng, K., X. Chen, M. Xu, X. Liu, X. Hu, T. Xu, H. Sun, Y. Pan, B. He, and S. Wang. 2018. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell death & disease 9 (4): 417–417.

    Article  Google Scholar 

  25. Reber, L., et al., Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. null, 2014. 66(10): p. 2881-91.

  26. Liu, Y.F., et al. 2016. Effects of berberine on NLRP3 and IL-1Î2 expressions in monocytic THP-1 cells with monosodium urate crystals-induced inflammation. Biomed Res Int 2016 (6): 2503703.

    PubMed  PubMed Central  Google Scholar 

  27. Chu, Y.L., Y.Q. Jiang, S.L. Sun, B.L. Zheng, W.S. Xiong, W.J. Li, X.M. Chen, M.J. Wang, Q.C. Huang, and R.Y. Huang. 2017. The differential profiles of long non-coding RNAs between rheumatoid arthritis and gouty arthritis. Discov Med 24 (132): 133–146.

    PubMed  Google Scholar 

  28. Jin, H., T.J. Kim, J.H. Choi, M.J. Kim, Y.N. Cho, K.I. Nam, S.J. Kee, J. Moon, S.Y. Choi, D.J. Park, S.S. Lee, and Y.W. Park. 2014. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Arthritis Res. Ther. 16 (2): R88.

    Article  Google Scholar 

  29. Ma, T., X. Liu, Z. Cen, C. Xin, M. Guo, C. Zou, W. Song, R. Xie, K. Wang, H. Zhou, J. Zhang, Z. Wang, C. Bian, K. Cui, J. Li, Y.Q. Wei, J. Li, and X. Zhou. 2018. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis research & therapy 20 (1): 34–34.

    Article  Google Scholar 

  30. Cheng, Z., C. Yu, S. Cui, H. Wang, H. Jin, C. Wang, B. Li, M. Qin, C. Yang, J. He, Q. Zuo, S. Wang, J. Liu, W. Ye, Y. Lv, F. Zhao, M. Yao, L. Jiang, and W. Qin. 2019. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nature communications 10 (1): 3200–3200.

    Article  Google Scholar 

  31. Lu, Q., T. Liu, H. Feng, R. Yang, X. Zhao, W. Chen, B. Jiang, H. Qin, X. Guo, M. Liu, L. Li, and H. Guo. 2019. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular cancer 18 (1): 111–111.

    Article  Google Scholar 

  32. Liu, J., et al., Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Proliferation, 2019. 0(0): p. e12648.

  33. Xie, F., Y. Li, M. Wang, C. Huang, D. Tao, F. Zheng, H. Zhang, F. Zeng, X. Xiao, and G. Jiang. 2018. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular cancer 17 (1): 144–144.

    Article  Google Scholar 

  34. Y, C., et al., High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochemical and biophysical research communications, 2018. 507(null): p. 362-368.

  35. Caserta, S., M. Mengozzi, F. Kern, S.F. Newbury, P. Ghezzi, and M.J. Llewelyn. 2018. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Frontiers in immunology 8: 1977–1977.

    Article  Google Scholar 

  36. Chu, Q., and T. Xu. 2016. miR-192 targeting IL-1RI regulates the immune response in miiuy croaker after pathogen infection in vitro and in vivo. Fish & Shellfish Immunology 54: 537–543.

    Article  CAS  Google Scholar 

  37. Y, L., et al., Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. Journal of clinical laboratory analysis, 2019. undefined(undefined): p. e22953.

  38. Thomson, D.W., and M.E. Dinger. 2016. Endogenous microRNA sponges: evidence and controversy. Nature Reviews Genetics 17: 272–283.

    Article  CAS  Google Scholar 

  39. SK, B., et al. 2016. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer research 76 (14): 4149–4159.

    Article  Google Scholar 

  40. Qian, K., B. Mao, W. Zhang, and H. Chen. 2016. MicroRNA-561 inhibits gastric cancercell proliferation and invasion by downregulating c-Myc expression. American journal of translational research 8 (9): 3802–3811.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Joint project of Medical Science and Technology Key Program of Henan Province (Grant No. 2018020122).

Author information

Authors and Affiliations

Authors

Contributions

C L performed the experiments, analyzed the data, wrote the paper, and contributed to the conception of the study; J S, W G, and L Z participated in the execution of the experiment; X Z, L Y, and W H contributed to analysis and manuscript preparation.

Corresponding author

Correspondence to Chaofeng Lian.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of The First Affiliated Hospital of Zhengzhou University. All patients signed informed consent. All animal experiments were complied with the ARRIVE guidelines and were carried out in accordance with the US Public Health Service Policy on Humane Care and Use of Laboratory Animals

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, C., Sun, J., Guan, W. et al. Circular RNA circHIPK3 Activates Macrophage NLRP3 Inflammasome and TLR4 Pathway in Gouty Arthritis via Sponging miR-561 and miR-192. Inflammation 44, 2065–2077 (2021). https://doi.org/10.1007/s10753-021-01483-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01483-2

KEY WORDS

Navigation