Skip to main content

Advertisement

Log in

Focal Adhesion Kinase Activity and Localization is Critical for TNF-α-Induced Nuclear Factor-κB Activation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

While sustained nuclear factor-κB (NF-κB) activation is critical for proinflammatory molecule expression, regulators of NF-κB activity during chronic inflammation are not known. We investigated the role of focal adhesion kinase (FAK) on sustained NF-κB activation in tumor necrosis factor-α (TNF-α)–stimulated endothelial cells (ECs) both in vitro and in vivo. We found that FAK inhibition abolished TNF-α-mediated sustained NF-κB activity in ECs by disrupting formation of TNF-α receptor complex-I (TNFRC-I). Additionally, FAK inhibition diminished recruitment of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and the inhibitor of NF-κB (IκB) kinase (IKK) complex to TNFRC-I, resulting in elevated stability of IκBα protein. In mice given TNF-α, pharmacological and genetic FAK inhibition blocked TNF-α-induced IKK-NF-κB activation in aortic ECs. Mechanistically, TNF-α activated and redistributed FAK from the nucleus to the cytoplasm, causing elevated IKK-NF-κB activation. On the other hand, FAK inhibition trapped FAK in the nucleus of ECs even upon TNF-α stimulation, leading to reduced IKK-NF-κB activity. Together, these findings support a potential use for FAK inhibitors in treating chronic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ECs:

Endothelial cells

FAK:

Focal adhesion kinase

HAoEC:

Human aortic endothelial cell

HUVEC:

Human umbilical vein endothelial cell

IκBα:

Inhibitor of NF-κBα

IKK:

IκB kinase

KD:

Kinase-dead

NEMO:

Nuclear factor-κB essential modulator (IKKγ)

NF-κB:

Nuclear factor-κB

pS536:

Phospho-serine 536 NF-κB

pY397:

Autophosphorylation at tyrosine 397 of FAK

RIPK1:

Receptor-interacting serine/threonine-protein kinase 1

TNF-α:

Tumor necrosis factor-α

TNFR1:

Tumor necrosis factor-α receptor 1

TNFRC-I:

TNF-α receptor complex-I

VCAM-1:

Vascular cell adhesion molecule-1

WT:

Wild-type

References

  1. Ursini, F., C. Leporini, F. Bene, S. D’Angelo, D. Mauro, E. Russo, G. De Sarro, I. Olivieri, C. Pitzalis, M. Lewis, and R.D. Grembiale. 2017. Anti-TNF-alpha agents and endothelial function in rheumatoid arthritis: a systematic review and meta-analysis. Scientific Reports 7 (1): 5346. https://doi.org/10.1038/s41598-017-05759-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Angel, K., S.A. Provan, M.K. Fagerhol, P. Mowinckel, T.K. Kvien, and D. Atar. 2012. Effect of 1-year anti-TNF-alpha therapy on aortic stiffness, carotid atherosclerosis, and calprotectin in inflammatory arthropathies: a controlled study. American Journal of Hypertension 25 (6): 644–650. https://doi.org/10.1038/ajh.2012.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baylis, R.A., D. Gomez, Z. Mallat, G. Pasterkamp, and G.K. Owens. 2017. The CANTOS Trial: one important step for clinical cardiology but a giant leap for vascular biology. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (11): e174–e177. https://doi.org/10.1161/ATVBAHA.117.310097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yurdagul, A., Jr., F.J. Sulzmaier, X.L. Chen, C.B. Pattillo, D.D. Schlaepfer, and A.W. Orr. 2016. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-kappaB activation and VCAM-1 expression. Journal of Cell Science 129 (8): 1580–1591. https://doi.org/10.1242/jcs.182097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy, J.M., K. Jeong, Y.A.R. Rodriguez, J.H. Kim, E.E. Ahn, and S.S. Lim. 2019. FAK and Pyk2 activity promote TNF-alpha and IL-1beta-mediated pro-inflammatory gene expression and vascular inflammation. Scientific Reports 9 (1): 7617. https://doi.org/10.1038/s41598-019-44098-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamaura, T., T. Kasaoka, N. Iijima, M. Kimura, and S. Hatakeyama. 2019. Evaluation of therapeutic effects of FAK inhibition in murine models of atherosclerosis. BMC Research Notes 12 (1): 200. https://doi.org/10.1186/s13104-019-4220-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schlaepfer, D.D., and S.K. Mitra. 2004. Multiple connections link FAK to cell motility and invasion. Current Opinion in Genetics & Development 14 (1): 92–101. https://doi.org/10.1016/j.gde.2003.12.002.

    Article  CAS  Google Scholar 

  8. Murphy, J.M., Y.A.R. Rodriguez, K. Jeong, E.E. Ahn, and S.S. Lim. 2020. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment. Experimental & Molecular Medicine 52 (6): 877–886. https://doi.org/10.1038/s12276-020-0447-4.

    Article  CAS  Google Scholar 

  9. Murphy, J.M., K. Jeong, and S.S. Lim. 2020. FAK family kinases in vascular diseases. International Journal of Molecular Sciences 21 (10). https://doi.org/10.3390/ijms21103630.

  10. Lim, S.T., N.L. Miller, X.L. Chen, I. Tancioni, C.T. Walsh, C. Lawson, S. Uryu, S.M. Weis, D.A. Cheresh, and D.D. Schlaepfer. 2012. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. The Journal of Cell Biology 197 (7): 907–919. https://doi.org/10.1083/jcb.201109067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petzold, T., A.W. Orr, C. Hahn, K.A. Jhaveri, J.T. Parsons, and M.A. Schwartz. 2009. Focal adhesion kinase modulates activation of NF-kappaB by flow in endothelial cells. American Journal of Physiology. Cell Physiology 297 (4): C814–C822. https://doi.org/10.1152/ajpcell.00226.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Funakoshi-Tago, M., Y. Sonoda, S. Tanaka, K. Hashimoto, K. Tago, S. Tominaga, and T. Kasahara. 2003. Tumor necrosis factor-induced nuclear factor kappaB activation is impaired in focal adhesion kinase-deficient fibroblasts. The Journal of Biological Chemistry 278 (31): 29359–29365. https://doi.org/10.1074/jbc.M213115200.

    Article  CAS  PubMed  Google Scholar 

  13. Schlaepfer, D.D., S. Hou, S.T. Lim, A. Tomar, H. Yu, Y. Lim, D.A. Hanson, S.A. Uryu, J. Molina, and S.K. Mitra. 2007. Tumor necrosis factor-alpha stimulates focal adhesion kinase activity required for mitogen-activated kinase-associated interleukin 6 expression. The Journal of Biological Chemistry 282 (24): 17450–17459.

    Article  CAS  Google Scholar 

  14. Wajant, H., and P. Scheurich. 2011. TNFR1-induced activation of the classical NF-kappaB pathway. The FEBS Journal 278 (6): 862–876. https://doi.org/10.1111/j.1742-4658.2011.08015.x.

    Article  CAS  PubMed  Google Scholar 

  15. Viatour, P., M.P. Merville, V. Bours, and A. Chariot. 2005. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends in Biochemical Sciences 30 (1): 43–52. https://doi.org/10.1016/j.tibs.2004.11.009.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, A., A. Levchenko, M.L. Scott, and D. Baltimore. 2002. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298 (5596): 1241–1245. https://doi.org/10.1126/science.1071914.

    Article  CAS  PubMed  Google Scholar 

  17. Zambrano, S., M.E. Bianchi, and A. Agresti. 2014. High-throughput analysis of NF-kappaB dynamics in single cells reveals basal nuclear localization of NF-kappaB and spontaneous activation of oscillations. PLoS One 9 (3): e90104. https://doi.org/10.1371/journal.pone.0090104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zambrano, S., I. De Toma, A. Piffer, M.E. Bianchi, and A. Agresti. 2016. NF-kappaB oscillations translate into functionally related patterns of gene expression. Elife 5: e09100. https://doi.org/10.7554/eLife.09100.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stevens, T., J. Creighton, and W.J. Thompson. 1999. Control of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function. The American Journal of Physiology 277 (1): L119–L126. https://doi.org/10.1152/ajplung.1999.277.1.L119.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J.H., M.C. Baddoo, E.Y. Park, J.K. Stone, H. Park, T.W. Butler, G. Huang, X. Yan, F. Pauli-Behn, R.M. Myers, M. Tan, E.K. Flemington, S.T. Lim, and E.Y. Ahn. 2016. SON and its alternatively spliced isoforms control mll complex-mediated H3K4me3 and transcription of leukemia-associated genes. Molecular Cell 61 (6): 859–873. https://doi.org/10.1016/j.molcel.2016.02.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pescatore, A., E. Esposito, P. Draber, H. Walczak, and M.V. Ursini. 2016. NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II. Cell Death & Disease 7 (8): e2346. https://doi.org/10.1038/cddis.2016.245.

    Article  CAS  Google Scholar 

  22. Gothert, J.R., S.E. Gustin, J.A. van Eekelen, U. Schmidt, M.A. Hall, S.M. Jane, A.R. Green, B. Gottgens, D.J. Izon, and C.G. Begley. 2004. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104 (6): 1769–1777. https://doi.org/10.1182/blood-2003-11-3952.

    Article  CAS  PubMed  Google Scholar 

  23. Lim, S.T., X.L. Chen, A. Tomar, N.L. Miller, J. Yoo, and D.D. Schlaepfer. 2010. Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. The Journal of Biological Chemistry 285 (28): 21526–21536. https://doi.org/10.1074/jbc.M110.129999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson, D.E., A.E. Ihekwaba, M. Elliott, J.R. Johnson, C.A. Gibney, B.E. Foreman, G. Nelson, V. See, C.A. Horton, D.G. Spiller, S.W. Edwards, H.P. McDowell, J.F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D.B. Kell, and M.R. White. 2004. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306 (5696): 704–708. https://doi.org/10.1126/science.1099962.

    Article  CAS  PubMed  Google Scholar 

  25. Sung, M.H., L. Salvatore, R. De Lorenzi, A. Indrawan, M. Pasparakis, G.L. Hager, M.E. Bianchi, and A. Agresti. 2009. Sustained oscillations of NF-kappaB produce distinct genome scanning and gene expression profiles. PLoS One 4 (9): e7163. https://doi.org/10.1371/journal.pone.0007163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Westhoff, M.A., B. Serrels, V.J. Fincham, M.C. Frame, and N.O. Carragher. 2004. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Molecular and Cellular Biology 24 (18): 8113–8133. https://doi.org/10.1128/MCB.24.18.8113-8133.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Israel, A. 2010. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harbor Perspectives in Biology 2 (3): a000158. https://doi.org/10.1101/cshperspect.a000158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388 (6642): 548–554. https://doi.org/10.1038/41493.

    Article  CAS  PubMed  Google Scholar 

  29. Dziedzic, S.A., Z. Su, V. Jean Barrett, A. Najafov, A.K. Mookhtiar, P. Amin, H. Pan, L. Sun, H. Zhu, A. Ma, D.W. Abbott, and J. Yuan. 2018. ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC. Nature Cell Biology 20 (1): 58–68. https://doi.org/10.1038/s41556-017-0003-1.

    Article  CAS  PubMed  Google Scholar 

  30. Peltzer, N., M. Darding, and H. Walczak. 2016. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends in Cell Biology 26 (6): 445–461. https://doi.org/10.1016/j.tcb.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  31. Blackwell, K., L. Zhang, L.M. Workman, A.T. Ting, K. Iwai, and H. Habelhah. 2013. Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IkappaB kinase activation. Molecular and Cellular Biology 33 (10): 1901–1915. https://doi.org/10.1128/MCB.01416-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Annibaldi, A., S. Wicky John, T. Vanden Berghe, K.N. Swatek, J. Ruan, G. Liccardi, K. Bianchi, P.R. Elliott, S.M. Choi, S. Van Coillie, J. Bertin, H. Wu, D. Komander, P. Vandenabeele, J. Silke, and P. Meier. 2018. Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. Molecular Cell 69 (4): 566–580 e565. https://doi.org/10.1016/j.molcel.2018.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, H., H. Meng, X. Li, K. Zhu, K. Dong, A.K. Mookhtiar, H. Wei, Y. Li, S.C. Sun, and J. Yuan. 2017. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proceedings of the National Academy of Sciences of the United States of America 114 (45): 11944–11949. https://doi.org/10.1073/pnas.1715742114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeong, K., J.H. Kim, J.M. Murphy, H. Park, S.J. Kim, Y.A.R. Rodriguez, H. Kong, C. Choi, J.L. Guan, J.M. Taylor, T.M. Lincoln, W.T. Gerthoffer, J.S. Kim, E.E. Ahn, D.D. Schlaepfer, and S.S. Lim. 2019. Nuclear focal adhesion kinase controls vascular smooth muscle cell proliferation and neointimal hyperplasia through GATA4-mediated cyclin D1 transcription. Circulation Research 125 (2): 152–166. https://doi.org/10.1161/CIRCRESAHA.118.314344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirt, U.A., I.C. Waizenegger, N. Schweifer, C. Haslinger, D. Gerlach, J. Braunger, U. Weyer-Czernilofsky, H. Stadtmuller, I. Sapountzis, G. Bader, A. Zoephel, B. Bister, A. Baum, J. Quant, N. Kraut, P. Garin-Chesa, and G.R. Adolf. 2018. Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis 7 (2): 21. https://doi.org/10.1038/s41389-018-0032-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Soria, J.C., H.K. Gan, S.P. Blagden, R. Plummer, H.T. Arkenau, M. Ranson, T.R. Evans, G. Zalcman, R. Bahleda, A. Hollebecque, C. Lemech, E. Dean, J. Brown, D. Gibson, V. Peddareddigari, S. Murray, N. Nebot, J. Mazumdar, L. Swartz, K.R. Auger, R.A. Fleming, R. Singh, and M. Millward. 2016. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Annals of Oncology 27 (12): 2268–2274. https://doi.org/10.1093/annonc/mdw427.

    Article  CAS  PubMed  Google Scholar 

  37. Jones, S.F., L.L. Siu, J.C. Bendell, J.M. Cleary, A.R. Razak, J.R. Infante, S.S. Pandya, P.L. Bedard, K.J. Pierce, B. Houk, W.G. Roberts, S.M. Shreeve, and G.I. Shapiro. 2015. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Investigational New Drugs 33 (5): 1100–1107. https://doi.org/10.1007/s10637-015-0282-y.

    Article  CAS  PubMed  Google Scholar 

  38. de Jonge, M.J.A., N. Steeghs, M.P. Lolkema, S.J. Hotte, H.W. Hirte, D.A.J. van der Biessen, A.R. Abdul Razak, F. De Vos, R.B. Verheijen, D. Schnell, L.C. Pronk, M. Jansen, and L.L. Siu. 2019. Phase I Study of BI 853520, an inhibitor of focal adhesion kinase, in patients with advanced or metastatic nonhematologic malignancies. Targeted Oncology 14 (1): 43–55. https://doi.org/10.1007/s11523-018-00617-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roy-Luzarraga, M., T. Abdel-Fatah, L.E. Reynolds, A. Clear, J.G. Taylor, J.G. Gribben, S. Chan, L. Jones, and K. Hodivala-Dilke. 2020. Association of low tumor endothelial cell pY397-focal adhesion kinase expression with survival in patients with neoadjuvant-treated locally advanced breast cancer. JAMA Network Open 3 (10): e2019304. https://doi.org/10.1001/jamanetworkopen.2020.19304.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tavora, B., L.E. Reynolds, S. Batista, F. Demircioglu, I. Fernandez, T. Lechertier, D.M. Lees, P.P. Wong, A. Alexopoulou, G. Elia, A. Clear, A. Ledoux, J. Hunter, N. Perkins, J.G. Gribben, and K.M. Hodivala-Dilke. 2014. Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 514 (7520): 112–116. https://doi.org/10.1038/nature13541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elly Trepman for critical reading of the manuscript, and Drs. Mary I. Townsley and John V. Marymont for editorial support.

Funding

This work was supported by American Heart Association grants 12SDG10970000 and 16GRNT30960007 to SL, National Institutes of Health grants R01CA190688 to EA and R01HL136432 to SL, and 2019 College of Medicine Intramural grant from University of South Alabama to SL. The confocal microscope was supported by National Institutes of Health grant S10RR027535.

Author information

Authors and Affiliations

Authors

Contributions

J.M. Murphy, E-Y.E. Ahn, H. Jo, and S-T.S. Lim designed the research; J.M. Murphy and K. Jeong performed the research; J.M. Murphy, K. Jeong, P.M. Campbell, E-Y.E. Ahn, and S-T.S. Lim analyzed data; D.L. Cioffi contributed new reagents; J.M. Murphy, K. Jeong, and S-T.S. Lim wrote the paper.

Corresponding author

Correspondence to Ssang-Taek Steve Lim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

FAK activity is important for TNF-α and IL-1β activation of NF-κB a, HAoECs were treated for 1 h with DMSO or PF-271 (2.5 μmol/L) prior to TNF-α (10 ng/mL) stimulation. Western blot analysis of pY397 FAK, FAK, pS536 NF-κB, NF-κB, IκBα, and β-actin (n=3). b, HAoECs were treated for 1 h with DMSO or PF-271 (2.5 μmol/L) prior to TNF-α (10 ng/ml) stimulation. NF-κB chromatin immunoprecipitation (ChIP) was performed (Life Technologies #51-0500) and NF-κB binding to IκBα promoter was determined via RT-qPCR and calculated as percent of input (n=3). **P<0.01, n.s.: not significant. c, After HAoECs were treated for 1 h with DMSO or a Src inhibitor (Dasatinib, 1 μmol/L), they were stimulated with TNF-α (10 ng/mL) for the times shown. Western blot analysis of pY397 FAK, FAK, pY418 Src, Src, pS536 NF-κB, IκBα, and β-actin (n=3). d, HAoECs were treated for 1 h with DMSO or PF-271 (2.5 μmol/L) prior to TNF-α (10 ng/mL) stimulation. Western blot analysis of pS176/177 IKKα/β, IKKα/β, pS32/36-IκBα, and IκBα. Same lysate samples as in Fig. 2c (n=3). (PNG 5255 kb)

High resolution image (TIF 1123 kb)

Supplementary Fig. 2

FAK inhibition reduces FAK association with TNFR1 and RIPK1 in HAoECs a and b, HAoECs were for 1 h with DMSO or PF-271 (2.5 μmol/L) prior to TNF-α (10 ng/ml) stimulation for 0.5 h. a, Immunostaining of HAoECs for FAK (green; mouse) and TNFR1 (red; rabbit). b, Immunostaining of HAoECs for FAK (green; mouse) and RIPK1 (red; rabbit). Scale bar, 20 μm (n=4). (PNG 5140 kb)

High resolution image (TIF 2473 kb)

Supplementary Fig. 3

Nuclear-localized FAK decreases TNF-α-induced NF-κB activation in mice a and b, C57BL/6 mice were treated with vehicle or PF-271 (35 mg/kg) for 2 days, and the last dose was 3 h before injection with PBS or mouse TNF-α (0.02 mg/kg) for 0.5 h. a, Immunostaining of mouse aorta for pS536 NF-κB (red; rabbit), vWF (green, EC marker; mouse), and DAPI (blue). b, Immunostaining of mouse aorta for pS176/177 IKKα/β (red; rabbit), vWF (green, EC marker; mouse), and DAPI (blue). Scale bar, 10 μm (n=4). (PNG 5029 kb)

High resolution image (TIF 743 kb)

Supplementary Fig. 4

EC-specific FAK inhibition decreases TNF-α-induced NF-κB activation in mice FAK flox/WT SCL-Cre and FAK flox/KD SCL-Cre mice were treated with tamoxifen (75 mg/kg) every other day for 2 weeks to generate FAK-WT and FAK-KD EC mice. After rest for 1 week, mice were injected with PBS or mouse TNF-α (0.02 mg/kg) for 0.5 h. Immunostaining of mouse aorta for pS536 NF-κB (red; rabbit), vWF (green, EC marker; mouse), and DAPI (blue). Scale bar, 10 μm (n=4). (PNG 5046 kb)

High resolution image (TIF 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, J.M., Jeong, K., Cioffi, D.L. et al. Focal Adhesion Kinase Activity and Localization is Critical for TNF-α-Induced Nuclear Factor-κB Activation. Inflammation 44, 1130–1144 (2021). https://doi.org/10.1007/s10753-020-01408-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01408-5

KEY WORDS

Navigation