Skip to main content

Advertisement

Log in

TRIM Proteins in Inflammation: from Expression to Emerging Regulatory Mechanisms

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation is an immune response to exogenous or endogenous insults that helps to maintain the tissue homeostasis under stressful conditions. Depending on the differential types of insults, inflammation is classified into microbial, autoimmune, metabolic, allergic, and physical inflammation. With regard to its involvement in the pathogenesis of most of human diseases, dissecting the key molecules in the regulation of inflammatory process is vital for the prevention and therapeutics of human diseases. Tripartite motif (TRIM) proteins are a versatile family of E3 ligases, which are composed of > 80 distinct members in humans recognized for their roles in antiviral responses. Recently, a large number of studies have shown the regulatory roles of TRIM proteins in mediating the inflammation. Herein in this review, we discuss the aberrations of TRIM proteins in autoimmune and autoinflammatory diseases, with a focus on the regulation of different components of inflammatory process, including inflammasome, NF-κB signaling, type I IFN (interferon) production, and Th1/Th17 cell differentiation. Importantly, elucidation of the mechanism underlying the regulation of inflammation by TRIMs provides insights into the use of TRIMs as therapeutic targets for disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hawiger, J., and J. Zienkiewicz. 2019. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scandinavian Journal of Immunology 90: e12812–e12812.

    PubMed  PubMed Central  Google Scholar 

  2. Zhang, Y., H. Fan, J. Xu, Y. Xiao, Y. Xu, Y. Li, and X. Li. 2013. Network analysis reveals functional cross-links between disease and inflammation genes. Scientific Reports 3: 3426–3426.

    PubMed  PubMed Central  Google Scholar 

  3. Rathinam, V.A., and K.A. Fitzgerald. 2016. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 165: 792–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Repa, A., G.K. Bertsias, E. Petraki, C. Choulaki, D. Vassou, K. Kambas, D.T. Boumpas, G. Goulielmos, and P. Sidiropoulos. 2015. Dysregulated production of interleukin-1β upon activation of the NLRP3 inflammasome in patients with familial Mediterranean fever. Human Immunology 76: 488–495.

    CAS  PubMed  Google Scholar 

  5. Gurung, P., and T.-D. Kanneganti. 2016. Autoinflammatory skin disorders: the inflammasome in focus. Trends in Molecular Medicine 22: 545–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Labzin, L.I., M. Bottermann, P. Rodriguez-Silvestre, S. Foss, J.T. Andersen, M. Vaysburd, D. Clift, and L.C. James. 2019. Antibody and DNA sensing pathways converge to activate the inflammasome during primary human macrophage infection. The EMBO Journal 38: e101365.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Coll, R.C. 2019. Role reversal: adaptive immunity instructs inflammasome activation for anti-viral defence. The EMBO Journal 38: e103533.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitoma, H., S. Hanabuchi, T. Kim, M. Bao, Z. Zhang, N. Sugimoto, and Y.J. Liu. 2013. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 39: 123–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weng, L., H. Mitoma, C. Trichot, M. Bao, Y. Liu, Z. Zhang, and Y.J. Liu. 2014. The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation. Journal of Immunology 193: 3676–3682.

    CAS  Google Scholar 

  10. Hu, Y., K. Mao, Y. Zeng, S. Chen, Z. Tao, C. Yang, S. Sun, X. Wu, G. Meng, and B. Sun. 2010. Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. Journal of Immunology 185: 7699–7705.

    CAS  Google Scholar 

  11. Kimura, T., A. Jain, S.W. Choi, M.A. Mandell, T. Johansen, and V. Deretic. 2017. TRIM-directed selective autophagy regulates immune activation. Autophagy 13: 989–990.

    CAS  PubMed  Google Scholar 

  12. Aral, K., E. Berdeli, P.R. Cooper, M.R. Milward, Y. Kapila, B. Karadede Ünal, C.A. Aral, and A. Berdeli. 2020. Differential expression of inflammasome regulatory transcripts in periodontal disease. Journal of Periodontology 91: 606–616.

    CAS  PubMed  Google Scholar 

  13. Stoler, I., J. Freytag, B. Orak, N. Unterwalder, S. Henning, K. Heim, H. von Bernuth, R. Krüger, S. Winkler, P. Eschenhagen, E. Seipelt, M.A. Mall, D. Foell, C. Kessel, H. Wittkowski, and T. Kallinich. 2020. Gene-dose effect of MEFV gain-of-function mutations determines ex vivo neutrophil activation in familial mediterranean fever. Frontiers in Immunology 11: 716–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kunishita, Y., R. Yoshimi, R. Kamiyama, D. Kishimoto, K. Yoshida, E. Hashimoto, T. Komiya, N. Sakurai, Y. Sugiyama, Y. Kirino, K. Ozato, and H. Nakajima. 2020. TRIM21 dysfunction enhances aberrant B-cell differentiation in autoimmune pathogenesis. Frontiers in Immunology 11: 98–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brauner, S., M. Ivanchenko, G.E. Thorlacius, A. Ambrosi, and M. Wahren-Herlenius. 2018. The Sjögren's syndrome-associated autoantigen Ro52/TRIM21 modulates follicular B cell homeostasis and immunoglobulin production. Clinical and Experimental Immunology 194: 315–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, L., T. Zhang, C. Zhang, C. Xiao, X. Bai, and G. Wang. 2020. Upregulated E3 ligase Trim21 in psoriatic epidermis ubiquitylates NF-κB p65 subunit and promotes inflammation in keratinocytes. British Journal of Dermatology. https://doi.org/10.1111/bjd.19057.

    Article  Google Scholar 

  17. Niida, M., M. Tanaka, and T. Kamitani. 2010. Downregulation of active IKK beta by Ro52-mediated autophagy. Molecular Immunology 47: 2378–2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi, M., H. Cho, K.-S. Inn, A. Yang, Z. Zhao, Q. Liang, G.A. Versteeg, S. Amini-Bavil-Olyaee, L.-Y. Wong, B.V. Zlokovic, H.S. Park, A. García-Sastre, and J.U. Jung. 2014. Negative regulation of NF-κB activity by brain-specific TRIpartite Motif protein 9. Nature Communications 5: 4820–4820.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, M., S. Li, K. Yu, J. Xiang, and F. Li. 2019. An E3 ubiquitin ligase TRIM9 is involved in WSSV infection via interaction with beta-TrCP. Developmental and Comparative Immunology 97: 57–63.

    CAS  PubMed  Google Scholar 

  20. Jang, H.-D., H.Z. Hwang, H.-S. Kim, and S.Y. Lee. 2019. C-Cbl negatively regulates TRAF6-mediated NF-κB activation by promoting K48-linked polyubiquitination of TRAF6. Cellular & Molecular Biology Letters 24: 29–29.

    Google Scholar 

  21. Chang, T.-H., R. Yoshimi, and K. Ozato. 2015. Tripartite motif (TRIM) 12c, a mouse homolog of TRIM5, is a ubiquitin ligase that stimulates type I IFN and NF-κB pathways along with TNFR-associated factor 6. Journal of Immunology (Baltimore, Md. : 1950) 195: 5367–5379.

    CAS  Google Scholar 

  22. Zhao, W., L. Wang, M. Zhang, C. Yuan, and C. Gao. 2012. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. Journal of Immunology 188: 2567–2574.

    CAS  Google Scholar 

  23. Huang, X., Y. Li, X. Li, D. Fan, H.B. Xin, and M. Fu. 2020. TRIM14 promotes endothelial activation via activating NF-kappaB signaling pathway. Journal of Molecular Cell Biology 12: 176–189.

    CAS  PubMed  Google Scholar 

  24. Noguchi, K., F. Okumura, N. Takahashi, A. Kataoka, T. Kamiyama, S. Todo, and S. Hatakeyama. 2011. TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 32: 995–1004.

    CAS  PubMed  Google Scholar 

  25. Qiu, H., F. Huang, H. Xiao, B. Sun, and R. Yang. 2013. TRIM22 inhibits the TRAF6-stimulated NF-kappaB pathway by targeting TAB2 for degradation. Virologica Sinica 28: 209–215.

    CAS  PubMed  Google Scholar 

  26. Shi, M., W. Deng, E. Bi, K. Mao, Y. Ji, G. Lin, X. Wu, Z. Tao, Z. Li, X. Cai, S. Sun, C. Xiang, and B. Sun. 2008. TRIM30α negatively regulates TLR-mediated NF-κB activation by targeting TAB2 and TAB3 for degradation. Nature Immunology 9: 369–377.

    CAS  PubMed  Google Scholar 

  27. Matsuda, A., Y. Suzuki, G. Honda, S. Muramatsu, O. Matsuzaki, Y. Nagano, T. Doi, K. Shimotohno, T. Harada, E. Nishida, H. Hayashi, and S. Sugano. 2003. Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene 22: 3307–3318.

    CAS  PubMed  Google Scholar 

  28. Kim, K., J.H. Kim, I. Kim, S. Seong, and N. Kim. 2018. TRIM38 regulates NF-kappaB activation through TAB2 degradation in osteoclast and osteoblast differentiation. Bone 113: 17–28.

    CAS  PubMed  Google Scholar 

  29. Hu, M.-M., Q. Yang, J. Zhang, S.-M. Liu, Y. Zhang, H. Lin, Z.-F. Huang, Y.-Y. Wang, X.-D. Zhang, B. Zhong, and H.-B. Shu. 2014. TRIM38 inhibits TNFα- and IL-1β–triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. Proceedings of the National Academy of Sciences 111: 1509–1514.

    CAS  Google Scholar 

  30. Shibata, M., T. Sato, R. Nukiwa, T. Ariga, and S. Hatakeyama. 2012. TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation. Biochemical and Biophysical Research Communications 423: 104–109.

    CAS  PubMed  Google Scholar 

  31. Hao, M.Q., L.J. Xie, W. Leng, and R.W. Xue. 2019. Trim47 is a critical regulator of cerebral ischemia-reperfusion injury through regulating apoptosis and inflammation. Biochemical and Biophysical Research Communications 515: 651–657.

    CAS  PubMed  Google Scholar 

  32. Bai, X., Y.-L. Zhang, and L.-N. Liu. 2020. Inhibition of TRIM8 restrains ischaemia-reperfusion-mediated cerebral injury by regulation of NF-κB activation associated inflammation and apoptosis. Experimental Cell Research 388: 111818.

    CAS  PubMed  Google Scholar 

  33. Muskardin, T.L.W., and T.B. Niewold. 2018. Type I interferon in rheumatic diseases. Nature Reviews Rheumatology 14: 214–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Higgs, R., J. Ní Gabhann, N. Ben Larbi, E.P. Breen, K.A. Fitzgerald, and C.A. Jefferies. 2008. The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. Journal of Immunology (Baltimore, Md. : 1950) 181: 1780–1786.

    CAS  Google Scholar 

  35. Tan, T., and L. Xia. 2020. TRIM21 Aggravates herpes simplex virus epithelial keratitis by attenuating STING-IRF3-mediated type I interferon signaling. Frontiers in Microbiology 11: 703–703.

    PubMed  PubMed Central  Google Scholar 

  36. Stacey, K.B., E. Breen, and C.A. Jefferies. 2012. Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS One 7: e34041.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maarifi, G., N. Smith, S. Maillet, O. Moncorgé, C. Chamontin, J. Edouard, F. Sohm, F.P. Blanchet, J.-P. Herbeuval, G. Lutfalla, et al. 2019. TRIM8 is required for virus-induced IFN response in human plasmacytoid dendritic cells. Science Advances 5: eaax3511.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, M., C. Dan, J.F. Gui, and Y.B. Zhang. 2019. Fish species-specific TRIM gene FTRCA1 negatively regulates interferon response through attenuating IRF7 transcription. Fish & Shellfish Immunology 90: 180–187.

    CAS  Google Scholar 

  39. Kondo, T., M. Watanabe, and S. Hatakeyama. 2012. TRIM59 interacts with ECSIT and negatively regulates NF-kappaB and IRF-3/7-mediated signal pathways. Biochemical and Biophysical Research Communications 422: 501–507.

    CAS  PubMed  Google Scholar 

  40. Zhao, W., L. Wang, M. Zhang, P. Wang, C. Yuan, J. Qi, H. Meng, and C. Gao. 2012. Tripartite motif-containing protein 38 negatively regulates TLR3/4- and RIG-I-mediated IFN-beta production and antiviral response by targeting NAP1. Journal of Immunology 188: 5311–5318.

    CAS  Google Scholar 

  41. Hu, M.M., X.Q. Xie, Q. Yang, C.Y. Liao, W. Ye, H. Lin, and H.B. Shu. 2015. TRIM38 negatively regulates TLR3/4-mediated innate immune and inflammatory responses by two sequential and distinct mechanisms. Journal of Immunology 195: 4415–4425.

    CAS  Google Scholar 

  42. Xue, Q., Z. Zhou, X. Lei, X. Liu, B. He, J. Wang, and T. Hung. 2012. TRIM38 negatively regulates TLR3-mediated IFN-beta signaling by targeting TRIF for degradation. PLoS One 7: e46825.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhaumik, S., and R. Basu. 2017. Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response. Frontiers in Immunology 8: 254–254.

    PubMed  PubMed Central  Google Scholar 

  44. Kotschenreuther, K., I. Waqué, S. Yan, A. Meyer, T. Haak, J. von Tresckow, J. Schiller, L. Gloyer, M. Dittrich-Salamon, and D.M. Kofler. 2020. Cannabinoids drive Th17 cell differentiation in patients with rheumatic autoimmune diseases. Cellular & Molecular Immunology. https://doi.org/10.1038/s41423-020-0437-4.

    Article  Google Scholar 

  45. Espinosa, A., V. Dardalhon, S. Brauner, A. Ambrosi, R. Higgs, F.J. Quintana, M. Sjöstrand, M.-L. Eloranta, J. Ní Gabhann, O. Winqvist, B. Sundelin, C.A. Jefferies, B. Rozell, V.K. Kuchroo, and M. Wahren-Herlenius. 2009. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. The Journal of Experimental Medicine 206: 1661–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brauner, S., X. Jiang, G.E. Thorlacius, A.M. Lundberg, T. Östberg, Z.-Q. Yan, V.K. Kuchroo, G.K. Hansson, and M. Wahren-Herlenius. 2017. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovascular Research 114: 158–167.

    Google Scholar 

  47. Zhou, G., W. Wu, L. Yu, T. Yu, W. Yang, P. Wang, X. Zhang, Y. Cong, and Z. Liu. 2018. Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. Journal of Allergy and Clinical Immunology 142: 1218–1228.e1212.

    CAS  Google Scholar 

  48. Ahn, Y., J.-H. Hwang, Z. Zheng, D. Bang, and D.-Y. Kim. 2017. Enhancement of Th1/Th17 inflammation by TRIM21 in Behçet's disease. Scientific Reports 7: 3018–3018.

    PubMed  PubMed Central  Google Scholar 

  49. Perez-Lloret, J., I.S. Okoye, R. Guidi, Y. Kannan, S.M. Coomes, S. Czieso, G. Mengus, I. Davidson, and M.S. Wilson. 2016. T-cell-intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy. Proceedings of the National Academy of Sciences of the United States of America 113: E568–E576.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, L., L. Jin, Y. Ke, X. Fan, T. Zhang, C. Zhang, H. Bian, and G. Wang. 2018. E3 Ligase Trim21 ubiquitylates and stabilizes keratin 17 to induce STAT3 activation in psoriasis. The Journal of Investigative Dermatology 138: 2568–2577.

    CAS  PubMed  Google Scholar 

  51. Vinter, H., A. Langkilde, V. Ottosson, A. Espinosa, M. Wahren-Herlenius, L. Raaby, C. Johansen, and L. Iversen. 2017. TRIM21 is important in the early phase of inflammation in the imiquimod-induced psoriasis-like skin inflammation mouse model. Experimental Dermatology 26: 713–720.

    CAS  PubMed  Google Scholar 

  52. Liu, Y., J.P. Lagowski, S. Gao, J.H. Raymond, C.R. White, and M.F. Kulesz-Martin. 2010. Regulation of the psoriatic chemokine CCL20 by E3 ligases Trim32 and Piasy in keratinocytes. The Journal of Investigative Dermatology 130: 1384–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y., Z. Wang, R. De La Torre, A. Barling, T. Tsujikawa, N. Hornick, J. Hanifin, E. Simpson, Y. Wang, E. Swanzey, et al. 2017. Trim32 deficiency enhances Th2 immunity and predisposes to features of atopic dermatitis. The Journal of Investigative Dermatology 137: 359–366.

    CAS  PubMed  Google Scholar 

  54. Espinosa, A., W. Zhou, M. Ek, M. Hedlund, S. Brauner, K. Popovic, L. Horvath, T. Wallerskog, M. Oukka, F. Nyberg, V.K. Kuchroo, and M. Wahren-Herlenius. 2006. The Sjogren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. Journal of Immunology 176: 6277–6285.

    CAS  Google Scholar 

  55. Smith, S., J. Ni Gabhann, E. McCarthy, B. Coffey, R. Mahony, J.C. Byrne, K. Stacey, E. Ball, A. Bell, G. Cunnane, et al. 2014. Estrogen receptor alpha regulates tripartite motif-containing protein 21 expression, contributing to dysregulated cytokine production in systemic lupus erythematosus. Arthritis & Rhematology 66: 163–172.

    CAS  Google Scholar 

  56. Kurata, R., H. Nakaoka, A. Tajima, K. Hosomichi, T. Shiina, A. Meguro, N. Mizuki, S. Ohono, I. Inoue, and H. Inoko. 2010. TRIM39 and RNF39 are associated with Behcet's disease independently of HLA-B *51 and -A *26. Biochemical and Biophysical Research Communications 401: 533–537.

    CAS  PubMed  Google Scholar 

  57. Hu, M.-M., and H.-B. Shu. 2017. Multifaceted roles of TRIM38 in innate immune and inflammatory responses. Cellular & Molecular Immunology 14: 331–338.

    CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant number 81602749, 81773265).

Author information

Authors and Affiliations

Authors

Contributions

L.Y wrote the manuscript and drafted the figures; H.X provided edits and comments; and all authors agreed on the final manuscript and figures.

Corresponding author

Correspondence to Luting Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xia, H. TRIM Proteins in Inflammation: from Expression to Emerging Regulatory Mechanisms. Inflammation 44, 811–820 (2021). https://doi.org/10.1007/s10753-020-01394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01394-8

KEY WORDS

Navigation